
Securing Distributed Hash Tables
using Proofs of Space

Christoph Günther

Krzysztof Pietrzak

CTB Workshop @ Eurocrypt 2025

This research was funded in whole or in part by the Austrian Science Fund (FWF) 10.55776/F85.

Distributed hash table (DHT)

• Network of nodes 𝑛 with identifier id ∈ 𝐼

• Key space 𝐾 ⊆ 𝐼 (e.g., file hashes)

• Each node is responsible for some 𝐾 ′ ⊆ 𝐾

• Efficient protocol lookup ∶ 𝐾 → 𝐼

𝐾

𝐼

2

Distributed hash table (DHT)

• Network of nodes 𝑛 with identifier id ∈ 𝐼

• Key space 𝐾 ⊆ 𝐼 (e.g., file hashes)

• Each node is responsible for some 𝐾 ′ ⊆ 𝐾

• Efficient protocol lookup ∶ 𝐾 → 𝐼

𝐾

𝐼

2

Distributed hash table (DHT)

• Network of nodes 𝑛 with identifier id ∈ 𝐼

• Key space 𝐾 ⊆ 𝐼 (e.g., file hashes)

• Each node is responsible for some 𝐾 ′ ⊆ 𝐾

• Efficient protocol lookup ∶ 𝐾 → 𝐼

𝐾

𝐼

2

Distributed hash table (DHT)

• Network of nodes 𝑛 with identifier id ∈ 𝐼

• Key space 𝐾 ⊆ 𝐼 (e.g., file hashes)

• Each node is responsible for some 𝐾 ′ ⊆ 𝐾

• Efficient protocol lookup ∶ 𝐾 → 𝐼

𝐾

𝐼

2

Applications

• Trackerless BitTorrent

• Tor Hidden Services

• Peer discovery in Ethereum (discv4/5)

• Data availability sampling (potentially)

• Distributed storage networks (e.g., IPFS or Swarm)

IPFS: ≈ 45000 DHT server nodes https://probelab.io/ipfs/kpi/, 2025-04-21

3

https://probelab.io/ipfs/kpi/

Applications

• Trackerless BitTorrent

• Tor Hidden Services

• Peer discovery in Ethereum (discv4/5)

• Data availability sampling (potentially)

• Distributed storage networks (e.g., IPFS or Swarm)

IPFS: ≈ 45000 DHT server nodes https://probelab.io/ipfs/kpi/, 2025-04-21

3

https://probelab.io/ipfs/kpi/

Applications

• Trackerless BitTorrent

• Tor Hidden Services

• Peer discovery in Ethereum (discv4/5)

• Data availability sampling (potentially)

• Distributed storage networks (e.g., IPFS or Swarm)

IPFS: ≈ 45000 DHT server nodes https://probelab.io/ipfs/kpi/, 2025-04-21

3

https://probelab.io/ipfs/kpi/

Applications

• Trackerless BitTorrent

• Tor Hidden Services

• Peer discovery in Ethereum (discv4/5)

• Data availability sampling (potentially)

• Distributed storage networks (e.g., IPFS or Swarm)

IPFS: ≈ 45000 DHT server nodes https://probelab.io/ipfs/kpi/, 2025-04-21

3

https://probelab.io/ipfs/kpi/

Applications

• Trackerless BitTorrent

• Tor Hidden Services

• Peer discovery in Ethereum (discv4/5)

• Data availability sampling (potentially)

• Distributed storage networks (e.g., IPFS or Swarm)

IPFS: ≈ 45000 DHT server nodes https://probelab.io/ipfs/kpi/, 2025-04-21

3

https://probelab.io/ipfs/kpi/

Applications

• Trackerless BitTorrent

• Tor Hidden Services

• Peer discovery in Ethereum (discv4/5)

• Data availability sampling (potentially)

• Distributed storage networks (e.g., IPFS or Swarm)

IPFS: ≈ 45000 DHT server nodes https://probelab.io/ipfs/kpi/, 2025-04-21

3

https://probelab.io/ipfs/kpi/

Sybil attacks

Adversary joins the network with multiple nodes using different identities

• IPFS content censorship attack [Sridhar et al., NDSS’24]

• Eclipse attack against IPFS [Prünster et al., USENIX’22]

• Eclipse attack against Ethereum’s peer-to-peer network [Marcus et al.,

ePrint 2018/236]

4

Sybil attacks

Adversary joins the network with multiple nodes using different identities

• IPFS content censorship attack [Sridhar et al., NDSS’24]

• Eclipse attack against IPFS [Prünster et al., USENIX’22]

• Eclipse attack against Ethereum’s peer-to-peer network [Marcus et al.,

ePrint 2018/236]

4

Sybil attacks

Adversary joins the network with multiple nodes using different identities

• IPFS content censorship attack [Sridhar et al., NDSS’24]

• Eclipse attack against IPFS [Prünster et al., USENIX’22]

• Eclipse attack against Ethereum’s peer-to-peer network [Marcus et al.,

ePrint 2018/236]

4

Sybil attacks

Adversary joins the network with multiple nodes using different identities

• IPFS content censorship attack [Sridhar et al., NDSS’24]

• Eclipse attack against IPFS [Prünster et al., USENIX’22]

• Eclipse attack against Ethereum’s peer-to-peer network [Marcus et al.,

ePrint 2018/236]

4

Outline

1. DHT constructions & attacks

2. Proof of work & downsides

3. Proof of space (PoSp)

Why space is a better fit

Combining DHTs + PoSp

Theoretical analysis

5

Outline

1. DHT constructions & attacks

2. Proof of work & downsides

3. Proof of space (PoSp)

Why space is a better fit

Combining DHTs + PoSp

Theoretical analysis

5

Outline

1. DHT constructions & attacks

2. Proof of work & downsides

3. Proof of space (PoSp)

Why space is a better fit

Combining DHTs + PoSp

Theoretical analysis

5

Chord
• 𝐼 = 𝐾 = ℤ𝑁

• Responsible for

preceding keys

• # of peers: 𝑂(log𝑛)

• # of hops: 𝑂(log𝑛)

0

6

Chord
• 𝐼 = 𝐾 = ℤ𝑁

• Responsible for

preceding keys

• # of peers: 𝑂(log𝑛)

• # of hops: 𝑂(log𝑛)

0

6

Chord
• 𝐼 = 𝐾 = ℤ𝑁

• Responsible for

preceding keys

• # of peers: 𝑂(log𝑛)

• # of hops: 𝑂(log𝑛)

0

6

Chord
• 𝐼 = 𝐾 = ℤ𝑁

• Responsible for

preceding keys

• # of peers: 𝑂(log𝑛)

• # of hops: 𝑂(log𝑛)

0

6

Chord
• 𝐼 = 𝐾 = ℤ𝑁

• Responsible for

preceding keys

• # of peers: 𝑂(log𝑛)

• # of hops: 𝑂(log𝑛)

0

6

Chord
• 𝐼 = 𝐾 = ℤ𝑁

• Responsible for

preceding keys

• # of peers: 𝑂(log𝑛)

• # of hops: 𝑂(log𝑛)

0

6

Chord
• 𝐼 = 𝐾 = ℤ𝑁

• Responsible for

preceding keys

• # of peers: 𝑂(log𝑛)

• # of hops: 𝑂(log𝑛)

0

6

Chord
• 𝐼 = 𝐾 = ℤ𝑁

• Responsible for

preceding keys

• # of peers: 𝑂(log𝑛)

• # of hops: 𝑂(log𝑛)

0

6

Chord
• 𝐼 = 𝐾 = ℤ𝑁

• Responsible for

preceding keys

• # of peers: 𝑂(log𝑛)

• # of hops: 𝑂(log𝑛)

0

6

Chord
• 𝐼 = 𝐾 = ℤ𝑁

• Responsible for

preceding keys

• # of peers: 𝑂(log𝑛)

• # of hops: 𝑂(log𝑛)

0

6

Chord
• 𝐼 = 𝐾 = ℤ𝑁

• Responsible for

preceding keys

• # of peers: 𝑂(log𝑛)

• # of hops: 𝑂(log𝑛)

0

6

Eclipse attack

7

Eclipse attack

7

Censorship attack

8

Censorship attack

8

Kademlia
• Practically more efficient (different distance metric)

• Redundancy/robustness features

• Multiple peers of similar distance

• Multiple nodes responsible for the same key

• Concurrent lookups

9

Kademlia
• Practically more efficient (different distance metric)

• Redundancy/robustness features

• Multiple peers of similar distance

• Multiple nodes responsible for the same key

• Concurrent lookups

9

Kademlia
• Practically more efficient (different distance metric)

• Redundancy/robustness features

• Multiple peers of similar distance

• Multiple nodes responsible for the same key

• Concurrent lookups

9

Kademlia
• Practically more efficient (different distance metric)

• Redundancy/robustness features

• Multiple peers of similar distance

• Multiple nodes responsible for the same key

• Concurrent lookups

9

Kademlia
• Practically more efficient (different distance metric)

• Redundancy/robustness features

• Multiple peers of similar distance

• Multiple nodes responsible for the same key

• Concurrent lookups

9

Preventing Attacks

• Resistance of the DHT against Sybils

• DHTs like Kademlia with ad-hoc guarantees

• Provably secure schemes (e.g., using committees + Byzantine agreement)

• Ease of Sybil creation

• Reducing the number of Sybils

• Restricting free identifier choice

10

Preventing Attacks

• Resistance of the DHT against Sybils

• DHTs like Kademlia with ad-hoc guarantees

• Provably secure schemes (e.g., using committees + Byzantine agreement)

• Ease of Sybil creation

• Reducing the number of Sybils

• Restricting free identifier choice

10

Preventing Attacks

• Resistance of the DHT against Sybils

• DHTs like Kademlia with ad-hoc guarantees

• Provably secure schemes (e.g., using committees + Byzantine agreement)

• Ease of Sybil creation

• Reducing the number of Sybils

• Restricting free identifier choice

10

Preventing Attacks

• Resistance of the DHT against Sybils

• DHTs like Kademlia with ad-hoc guarantees

• Provably secure schemes (e.g., using committees + Byzantine agreement)

• Ease of Sybil creation

• Reducing the number of Sybils

• Restricting free identifier choice

10

Preventing Attacks

• Resistance of the DHT against Sybils

• DHTs like Kademlia with ad-hoc guarantees

• Provably secure schemes (e.g., using committees + Byzantine agreement)

• Ease of Sybil creation

• Reducing the number of Sybils

• Restricting free identifier choice

10

Preventing Attacks

• Resistance of the DHT against Sybils

• DHTs like Kademlia with ad-hoc guarantees

• Provably secure schemes (e.g., using committees + Byzantine agreement)

• Ease of Sybil creation

• Reducing the number of Sybils

• Restricting free identifier choice

10

Preventing Attacks

• Resistance of the DHT against Sybils

• DHTs like Kademlia with ad-hoc guarantees

• Provably secure schemes (e.g., using committees + Byzantine agreement)

• Ease of Sybil creation

• Reducing the number of Sybils

• Restricting free identifier choice

10

Proof of work (PoW)

Node Peer

Challenge 𝑐 𝜋 ← PoW.Prove(𝑐)

Proof 𝜋

Issues

1. DHT nodes usually don’t have a lot of computing power

2. Wastes energy constantly

11

Proof of work (PoW)

Node Peer

Challenge 𝑐 𝜋 ← PoW.Prove(𝑐)

Proof 𝜋

Issues

1. DHT nodes usually don’t have a lot of computing power

2. Wastes energy constantly

11

Proof of work (PoW)

Node Peer

Challenge 𝑐 𝜋 ← PoW.Prove(𝑐)

Proof 𝜋

Issues

1. DHT nodes usually don’t have a lot of computing power

2. Wastes energy constantly

11

Proof of work (PoW)

Node Peer

Challenge 𝑐 𝜋 ← PoW.Prove(𝑐)

Proof 𝜋

Issues

1. DHT nodes usually don’t have a lot of computing power

2. Wastes energy constantly

11

Proof of work (PoW)

Node Peer

Challenge 𝑐 𝜋 ← PoW.Prove(𝑐)

Proof 𝜋

Issues

1. DHT nodes usually don’t have a lot of computing power

2. Wastes energy constantly

11

Proof of work (PoW)

Node Peer

Challenge 𝑐 𝜋 ← PoW.Prove(𝑐)

Proof 𝜋

Issues

1. DHT nodes usually don’t have a lot of computing power

⇒ PoW difficulty cannot be too high

⇒ No meaningful security (resource asymmetry)

2. Wastes energy constantly

11

Proof of work (PoW)

Node Peer

Challenge 𝑐 𝜋 ← PoW.Prove(𝑐)

Proof 𝜋

Issues

1. DHT nodes usually don’t have a lot of computing power

⇒ PoW difficulty cannot be too high

⇒ No meaningful security (resource asymmetry)

2. Wastes energy constantly
11

Wasting disk space

1. Synergy with storage applications (e.g., IPFS, data availability sampling)

• Honest nodes usually have a lot of disk space (e.g., IPFS)

• Meaningful security guarantees:

To control a large fraction of all nodes, the adversary must contribute a

large fraction of the total space dedicated to the application

2. Energy efficient (after initial setup)

12

Wasting disk space

1. Synergy with storage applications (e.g., IPFS, data availability sampling)

• Honest nodes usually have a lot of disk space (e.g., IPFS)

• Meaningful security guarantees:

To control a large fraction of all nodes, the adversary must contribute a

large fraction of the total space dedicated to the application

2. Energy efficient (after initial setup)

12

Wasting disk space

1. Synergy with storage applications (e.g., IPFS, data availability sampling)

• Honest nodes usually have a lot of disk space (e.g., IPFS)

• Meaningful security guarantees:

To control a large fraction of all nodes, the adversary must contribute a

large fraction of the total space dedicated to the application

2. Energy efficient (after initial setup)

12

Wasting disk space

1. Synergy with storage applications (e.g., IPFS, data availability sampling)

• Honest nodes usually have a lot of disk space (e.g., IPFS)

• Meaningful security guarantees:

To control a large fraction of all nodes, the adversary must contribute a

large fraction of the total space dedicated to the application

2. Energy efficient (after initial setup)

12

Proof of space (PoSp) à la Filecoin

P V

File size𝑁 and seed

𝜙 commitment to fileInit file(seed)

𝜙 (mostly) consistent with file?𝜋𝜙 (Fiat-Shamir)
Initialization Phase

Online PhaseChallenge 𝑐

Proof 𝜋

13

Proof of space (PoSp) à la Filecoin

P V

File size𝑁 and seed

𝜙 commitment to fileInit file(seed)

𝜙 (mostly) consistent with file?𝜋𝜙 (Fiat-Shamir)
Initialization Phase

Online PhaseChallenge 𝑐

Proof 𝜋

13

Proof of space (PoSp) à la Filecoin

P V

File size𝑁 and seed

𝜙 commitment to fileInit file(seed)

𝜙 (mostly) consistent with file?𝜋𝜙 (Fiat-Shamir)
Initialization Phase

Online PhaseChallenge 𝑐

Proof 𝜋

13

Proof of space (PoSp) à la Filecoin

P V

File size𝑁 and seed

𝜙 commitment to fileInit file(seed)

𝜙 (mostly) consistent with file?𝜋𝜙 (Fiat-Shamir)
Initialization Phase

Online PhaseChallenge 𝑐

Proof 𝜋

13

Proof of space (PoSp) à la Filecoin

P V

File size𝑁 and seed

𝜙 commitment to fileInit file(seed)

𝜙 (mostly) consistent with file?𝜋𝜙 (Fiat-Shamir)
Initialization Phase

Online PhaseChallenge 𝑐

Proof 𝜋

13

Proof of space (PoSp) à la Filecoin

P V

File size𝑁 and seed

𝜙 commitment to fileInit file(seed)

𝜙 (mostly) consistent with file?𝜋𝜙 (Fiat-Shamir)
Initialization Phase

Online PhaseChallenge 𝑐

Proof 𝜋

13

Proof of space (PoSp) à la Filecoin

P V

File size𝑁 and seed

𝜙 commitment to fileInit file(seed)

𝜙 (mostly) consistent with file?𝜋𝜙 (Fiat-Shamir)
Initialization Phase

Online PhaseChallenge 𝑐

Proof 𝜋

13

Proof of space (PoSp) à la Filecoin

P V

File size𝑁 and seed

𝜙 commitment to fileInit file(seed)

𝜙 (mostly) consistent with file?𝜋𝜙 (Fiat-Shamir)
Initialization Phase

Online PhaseChallenge 𝑐

Proof 𝜋

13

Proof of space (PoSp) à la Filecoin

P V

File size𝑁 and seed

𝜙 commitment to fileInit file(seed)

𝜙 (mostly) consistent with file?𝜋𝜙 (Fiat-Shamir)
Initialization Phase

Online PhaseChallenge 𝑐

Proof 𝜋

13

Proofs of Space (PoSp)

• PoSp.Init(𝑁, seed) → (file, 𝜙, 𝜋𝜙) where |file| = 𝑁 bits

• PoSp.Prove(file, 𝜙, 𝑐) → 𝜋𝑐

• …and verification algorithms

14

Proofs of Space (PoSp)

• PoSp.Init(𝑁, seed) → (file, 𝜙, 𝜋𝜙) where |file| = 𝑁 bits

• PoSp.Prove(file, 𝜙, 𝑐) → 𝜋𝑐

• …and verification algorithms

14

Proofs of Space (PoSp)

• PoSp.Init(𝑁, seed) → (file, 𝜙, 𝜋𝜙) where |file| = 𝑁 bits

• PoSp.Prove(file, 𝜙, 𝑐) → 𝜋𝑐

• …and verification algorithms

14

Proofs of Space (PoSp)

• PoSp.Init(𝑁, seed) → (file, 𝜙, 𝜋𝜙) where |file| = 𝑁 bits

• PoSp.Prove(file, 𝜙, 𝑐) → 𝜋𝑐

• …and verification algorithms

Space-hardness: A cheating prover

storing less than 𝛼𝑁 bits

running in less than 𝛽 time(Init)
fails challenge 𝑐 with probability at least 𝑝

14

Basic construction

Combines PoSp with existing DHT

Joining the DHT

Store (file, 𝜙, 𝜋𝜙) ← PoSp.Init(𝑁,DHT.id)

Being added as a peer

Send (𝜙, 𝜋𝜙) to them

While connected

Every 𝑡 seconds, receive 𝜅 PoSp challenges 𝑐1,… , 𝑐𝜅
Reply 𝜋𝑖 ← PoSp.Prove(file, 𝜙, 𝑐𝑖) for every 𝑖 ∈ [𝜅]

15

Basic construction

Combines PoSp with existing DHT

Joining the DHT

Store (file, 𝜙, 𝜋𝜙) ← PoSp.Init(𝑁,DHT.id)

Being added as a peer

Send (𝜙, 𝜋𝜙) to them

While connected

Every 𝑡 seconds, receive 𝜅 PoSp challenges 𝑐1,… , 𝑐𝜅
Reply 𝜋𝑖 ← PoSp.Prove(file, 𝜙, 𝑐𝑖) for every 𝑖 ∈ [𝜅]

15

Basic construction

Combines PoSp with existing DHT

Joining the DHT Store (file, 𝜙, 𝜋𝜙) ← PoSp.Init(𝑁,DHT.id)
Being added as a peer

Send (𝜙, 𝜋𝜙) to them

While connected

Every 𝑡 seconds, receive 𝜅 PoSp challenges 𝑐1,… , 𝑐𝜅
Reply 𝜋𝑖 ← PoSp.Prove(file, 𝜙, 𝑐𝑖) for every 𝑖 ∈ [𝜅]

15

Basic construction

Combines PoSp with existing DHT

Joining the DHT Store (file, 𝜙, 𝜋𝜙) ← PoSp.Init(𝑁,DHT.id)
Being added as a peer Send (𝜙, 𝜋𝜙) to them
While connected

Every 𝑡 seconds, receive 𝜅 PoSp challenges 𝑐1,… , 𝑐𝜅
Reply 𝜋𝑖 ← PoSp.Prove(file, 𝜙, 𝑐𝑖) for every 𝑖 ∈ [𝜅]

15

Basic construction

Combines PoSp with existing DHT

Joining the DHT Store (file, 𝜙, 𝜋𝜙) ← PoSp.Init(𝑁,DHT.id)
Being added as a peer Send (𝜙, 𝜋𝜙) to them
While connected Every 𝑡 seconds, receive 𝜅 PoSp challenges 𝑐1,… , 𝑐𝜅

Reply 𝜋𝑖 ← PoSp.Prove(file, 𝜙, 𝑐𝑖) for every 𝑖 ∈ [𝜅]

15

Security guarantee

The number of Sybil nodes 𝑓 is bounded by

𝑓 < 𝑆ADV
𝛼𝑁

Every Sybil costs 𝛼𝑁 space

except for exponentially small probability in 𝜆 if

• number of challenges 𝜅 = 𝜆/𝑝

⇒ boost detection probability

• challenge interval 𝑡 < 𝛽 time(Init)

⇒must use 𝛼𝑁 space

16

Security guarantee

The number of Sybil nodes 𝑓 is bounded by

𝑓 < 𝑆ADV
𝛼𝑁

Every Sybil costs 𝛼𝑁 space

except for exponentially small probability in 𝜆 if

• number of challenges 𝜅 = 𝜆/𝑝 ⇒ boost detection probability

• challenge interval 𝑡 < 𝛽 time(Init)

⇒must use 𝛼𝑁 space

16

Security guarantee

The number of Sybil nodes 𝑓 is bounded by

𝑓 < 𝑆ADV
𝛼𝑁

Every Sybil costs 𝛼𝑁 space

except for exponentially small probability in 𝜆 if

• number of challenges 𝜅 = 𝜆/𝑝 ⇒ boost detection probability

• challenge interval 𝑡 < 𝛽 time(Init) ⇒must use 𝛼𝑁 space

16

Security guarantee

The number of Sybil nodes 𝑓 is bounded by

𝑓 < 𝑆ADV
𝛼𝑁

Every Sybil costs 𝛼𝑁 space

except for exponentially small probability in 𝜆 if

• number of challenges 𝜅 = 𝜆/𝑝 ⇒ boost detection probability

• challenge interval 𝑡 < 𝛽 time(Init) ⇒must use 𝛼𝑁 space

16

Virtual nodes

Problem: Often want a bound on the fraction of Sybils 𝑓/𝑛 < 𝛾

Solution: Honest node with space 𝑆 participates as 𝛿𝑆/𝑁 distinct identities

⇒𝑛 grows linearly in the total honest space 𝑆HON

Security guarantee

𝑓/𝑛 < 𝛾 as long as 𝑆ADV < const(𝛼, 𝛾, 𝛿) ⋅ 𝑆HON

17

Virtual nodes

Problem: Often want a bound on the fraction of Sybils 𝑓/𝑛 < 𝛾
Solution: Honest node with space 𝑆 participates as 𝛿𝑆/𝑁 distinct identities

⇒𝑛 grows linearly in the total honest space 𝑆HON

Security guarantee

𝑓/𝑛 < 𝛾 as long as 𝑆ADV < const(𝛼, 𝛾, 𝛿) ⋅ 𝑆HON

17

Virtual nodes

Problem: Often want a bound on the fraction of Sybils 𝑓/𝑛 < 𝛾
Solution: Honest node with space 𝑆 participates as 𝛿𝑆/𝑁 distinct identities

⇒𝑛 grows linearly in the total honest space 𝑆HON

Security guarantee

𝑓/𝑛 < 𝛾 as long as 𝑆ADV < const(𝛼, 𝛾, 𝛿) ⋅ 𝑆HON

17

Virtual nodes

Problem: Often want a bound on the fraction of Sybils 𝑓/𝑛 < 𝛾
Solution: Honest node with space 𝑆 participates as 𝛿𝑆/𝑁 distinct identities

⇒𝑛 grows linearly in the total honest space 𝑆HON

Security guarantee

𝑓/𝑛 < 𝛾 as long as 𝑆ADV < const(𝛼, 𝛾, 𝛿) ⋅ 𝑆HON

17

Practicality?

Observation: Depends on the PoSp parameters 𝛼, 𝛽 and 𝑝

Issue: Too many challenges (# of challenges 𝜅 large, interval 𝑡 small)
⇒ bandwidth too high

Solution: Improve protocol: Probabilistic challenges & time epochs

18

Practicality?

Observation: Depends on the PoSp parameters 𝛼, 𝛽 and 𝑝

Issue: Too many challenges (# of challenges 𝜅 large, interval 𝑡 small)

⇒ bandwidth too high

Solution: Improve protocol: Probabilistic challenges & time epochs

18

Practicality?

Observation: Depends on the PoSp parameters 𝛼, 𝛽 and 𝑝

Issue: Too many challenges (# of challenges 𝜅 large, interval 𝑡 small)
⇒ bandwidth too high

Solution: Improve protocol: Probabilistic challenges & time epochs

18

Practicality?

Observation: Depends on the PoSp parameters 𝛼, 𝛽 and 𝑝

Issue: Too many challenges (# of challenges 𝜅 large, interval 𝑡 small)
⇒ bandwidth too high

Solution: Improve protocol: Probabilistic challenges & time epochs

18

Improved protocol

𝑇
Wait Use peer for DHT

Pr[challenge at time 𝑡] = 𝑞
$ $ $ $ $

19

Improved protocol

𝑇
Add peer Wait Use peer for DHT

Pr[challenge at time 𝑡] = 𝑞
$ $ $ $ $

19

Improved protocol

𝑇
Add peer Wait Use peer for DHT

Pr[challenge at time 𝑡] = 𝑞
$ $ $ $ $

19

Improved protocol

𝑇
Add peer Wait Use peer for DHT

Pr[challenge at time 𝑡] = 𝑞
$ $ $ $ $

19

Improved protocol

𝑇
Add peer Wait Use peer for DHT

Pr[challenge at time 𝑡] = 𝑞
$ $ $ $ $

19

Security guarantee

𝑇 = 4𝜆/(𝑝𝑞) and ADV has space for 𝑓 = 𝑆ADV/(𝛼𝑁) Sybils
⇒

at most 2𝑓 Sybils except for negl. probability in 𝜆

Note that 𝑝𝑞 is that a probability that a peer is challenged and detected.

Improvements over basic scheme

1. Fewer challenges in expectation

2. No need to boost detection probability (constant 𝑝 is fine)

20

Security guarantee

𝑇 = 4𝜆/(𝑝𝑞) and ADV has space for 𝑓 = 𝑆ADV/(𝛼𝑁) Sybils
⇒

at most 2𝑓 Sybils except for negl. probability in 𝜆

Note that 𝑝𝑞 is that a probability that a peer is challenged and detected.

Improvements over basic scheme

1. Fewer challenges in expectation

2. No need to boost detection probability (constant 𝑝 is fine)

20

Security guarantee

𝑇 = 4𝜆/(𝑝𝑞) and ADV has space for 𝑓 = 𝑆ADV/(𝛼𝑁) Sybils
⇒

at most 2𝑓 Sybils except for negl. probability in 𝜆

Note that 𝑝𝑞 is that a probability that a peer is challenged and detected.

Improvements over basic scheme

1. Fewer challenges in expectation

2. No need to boost detection probability (constant 𝑝 is fine)
20

Contributions Future work
• Using disk space to limit

Sybils in DHTs

• Simple & practical schemes

• Theoretical analysis

• Simulations/implementation

• Don’t waste space (e.g.,

backups)

• DHTs handling large 𝑓/𝑛

Securing Distributed Hash Tables using Proofs of Space

C. U. Günther and K. Pietrzak

https://gnthr.eu/uploads/posp_dht_draft.pdf

