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Distributed hash table (DHT)

Network of nodes n with identifierid € I I

Key space K c I (e.g,, file hashes)

Each node is responsible for some K' ¢ K

Efficient protocol lookup: K — I
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® Trackerless BitTorrent
® Tor Hidden Services

® Peer discovery in Ethereum (discv4/5)

Data availability sampling (potentially)

Distributed storage networks (e.g., IPFS or Swarm)

IPFS: ~ 45000 DHT server nodes nttps://probelab.io/ipfs/kpi/, 2025-04-21
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Sybil attacks

Adversary joins the network with multiple nodes using different identities
® |PFS content censorship attack [Sridhar et al.,, NDSS'24]
e Eclipse attack against IPFS [PrUnster et al., USENIX'22]

® Eclipse attack against Ethereum'’s peer-to-peer network [Marcus et al.,
ePrint 2018/236]
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1. DHT constructions & attacks
2. Proof of work & downsides

3. Proof of space (PoSp)

Why space is a better fit
Combining DHTs + PoSp
Theoretical analysis
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Chord

.I:K:ZN

Responsible for
preceding keys

# of peers: O(logn)
# of hops: O(logn)
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Kademlia

® Practically more efficient (different distance metric)
® Redundancy/robustness features

® Multiple peers of similar distance
® Multiple nodes responsible for the same key

® Concurrent lookups
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Proof of work (PoW)

Challenge c

/—\ 71 <— PoW.Prove(c)

Nod\/Peer

Proof

Issues
1. DHT nodes usually don't have a lot of computing power
= PoW difficulty cannot be too high

= No meaningful security (resource asymmetry)

2. Wastes energy constantly
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Wasting disk space

1. Synergy with storage applications (e.g., IPFS, data availability sampling)

® Honest nodes usually have a lot of disk space (e.g., IPFS)
® Meaningful security guarantees:
To control a large fraction of all nodes, the adversary must contribute a

large fraction of the total space dedicated to the application

2. Energy efficient (after initial setup)

12
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Proof of space (PoSp) : i ritccoin

File size N and seed
P V

Init file(seed) ¢ commitment to file

Y

Ty (Fiat-Shamir)

Y

Initialization Phase

Challenge ¢

Proof G

A

Y

Online Phase
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Proofs of Space (PoSp)

® PoSp.Init(N, seed) — (file, ¢, ard)) where |file| = N bits
® PoSp.Prove(file, ¢,c) —

e __.and verification algorithms

Space-hardness: A cheating prover
storing less than aN bits
running in less than p time(Init)
fails challenge c with probability at least p
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Basic construction

Combines PoSp with existing DHT

Joining the DHT Store (file, ¢, 7r¢) — PoSp.Init(N, DHT.id)
Being added as a peer Send (¢, 7r¢) to them
While connected Every t seconds, receive k PoSp challenges ¢y, ..., ¢,

Reply 7r; < PoSp.Prove(file, ¢, c;) foreveryi € [k]
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Security guarantee

The number of Sybil nodes f is bounded by

Every Sybil costs aN space
f < M <«
alN
except for exponentially small probability in A if
e number of challengesk = A/p = boost detection probability

® challenge interval t < ftime(Init) = must use aN space
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Virtual nodes

Problem: Often want a bound on the fraction of Sybils f/n <y
Solution: Honest node with space S participates as 8S/N distinct identities
= n grows linearly in the total honest space S,

Security guarantee

f/n <yaslongasS,y, < const(a,y,d) - Syoy
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Practicality?

Observation: Depends on the PoSp parameters a, S and p

Issue: Too many challenges (# of challenges « large, interval t small)
= bandwidth too high

Solution: Improve protocol: Probabilistic challenges & time epochs
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Improved protocol

Pr[challenge attime t] = g
$ $ 3 $ $

Add peer Wait Use peer for DHT
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Security guarantee

T = 4A/(pq) and ADV has space for f = S,p,/(aN) Sybils
=
at most 2f Sybils except for negl. probability in A

Note that pq is that a probability that a peer is challenged and detected.

Improvements over basic scheme
1. Fewer challenges in expectation

2. No need to boost detection probability (constant p is fine)
20



Contributions Future work

® Using disk space to limit e Simulations/implementation

Sybils in DHTs e Don't waste space (e.g.,

® Simple & practical schemes backups)

® Theoretical analysis ® DHTs handling large f/n
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