Securing Distributed Hash Tables
using Proofs of Space

Christoph Gunther
Krzysztof Pietrzak

CTB Workshop @ Eurocrypt 2025

Institute of
Science and

n H“ Technology FWF Austrian s P "‘ D
Austria Science Fund y «O e

This research was funded in whole or in part by the Austrian Science Fund (FWF) 10.55776/F85.

Distributed hash table (DHT)

e Network of nodes n with identifierid € I

Distributed hash table (DHT)

e Network of nodes n with identifierid € I

e Key space K c I (e.g,, file hashes)

Distributed hash table (DHT)

* Network of nodes n with identifier id € I I
e Key space K c I (e.g,, file hashes)

® Fach node is responsible for some K' € K

Distributed hash table (DHT)

Network of nodes n with identifierid € I I

Key space K c I (e.g,, file hashes)

Each node is responsible for some K' ¢ K

Efficient protocol lookup: K — I

Applications

® Trackerless BitTorrent

https://probelab.io/ipfs/kpi/

Applications

® Trackerless BitTorrent

® Tor Hidden Services

https://probelab.io/ipfs/kpi/

Applications

® Trackerless BitTorrent
® Tor Hidden Services

® Peer discovery in Ethereum (discv4/5)

https://probelab.io/ipfs/kpi/

Applications

Trackerless BitTorrent

Tor Hidden Services

Peer discovery in Ethereum (discv4/5)

Data availability sampling (potentially)

https://probelab.io/ipfs/kpi/

Applications

Trackerless BitTorrent

Tor Hidden Services

Peer discovery in Ethereum (discv4/5)

Data availability sampling (potentially)

Distributed storage networks (e.g., IPFS or Swarm)

https://probelab.io/ipfs/kpi/

Applications

® Trackerless BitTorrent
® Tor Hidden Services

® Peer discovery in Ethereum (discv4/5)

Data availability sampling (potentially)

Distributed storage networks (e.g., IPFS or Swarm)

IPFS: ~ 45000 DHT server nodes nttps://probelab.io/ipfs/kpi/, 2025-04-21

https://probelab.io/ipfs/kpi/

Sybil attacks

Adversary joins the network with multiple nodes using different identities

Sybil attacks

Adversary joins the network with multiple nodes using different identities

® |PFS content censorship attack [Sridhar et al.,, NDSS'24]

Sybil attacks

Adversary joins the network with multiple nodes using different identities
® |PFS content censorship attack [Sridhar et al.,, NDSS'24]
e Eclipse attack against IPFS [PrUnster et al., USENIX'22]

Sybil attacks

Adversary joins the network with multiple nodes using different identities
® |PFS content censorship attack [Sridhar et al.,, NDSS'24]
e Eclipse attack against IPFS [PrUnster et al., USENIX'22]

® Eclipse attack against Ethereum'’s peer-to-peer network [Marcus et al.,
ePrint 2018/236]

Outline

1. DHT constructions & attacks

Outline

1. DHT constructions & attacks

2. Proof of work & downsides

Outline

1. DHT constructions & attacks
2. Proof of work & downsides

3. Proof of space (PoSp)

Why space is a better fit
Combining DHTs + PoSp
Theoretical analysis

Chord

e [=K =17,

Chord

[] I =] K =S ZN
® Responsible for
preceding keys

Chord

[I =] K = ZN
® Responsible for
preceding keys

e #of peers: O(logn)

Chord

[I =] K = ZN
® Responsible for
preceding keys

e #of peers: O(logn)

Chord

[I =] K = ZN
® Responsible for
preceding keys

e #of peers: O(logn)

Chord

[I =] K = ZN
® Responsible for
preceding keys

e #of peers: O(logn)

Chord

[I =] K = ZN
® Responsible for
preceding keys

e #of peers: O(logn)

Chord

[I =] K = ZN
® Responsible for
preceding keys

e #of peers: O(logn)

Chord

.I:K:ZN

Responsible for
preceding keys

of peers: O(logn)
of hops: O(logn)

Eclipse attack

Eclipse attack

Censorship attack

Censorship attack

Kademlia

® Practically more efficient (different distance metric)

Kademlia

® Practically more efficient (different distance metric)

® Redundancy/robustness features

Kademlia

® Practically more efficient (different distance metric)
® Redundancy/robustness features

® Multiple peers of similar distance

Kademlia

® Practically more efficient (different distance metric)
® Redundancy/robustness features

® Multiple peers of similar distance
® Multiple nodes responsible for the same key

Kademlia

® Practically more efficient (different distance metric)
® Redundancy/robustness features

® Multiple peers of similar distance
® Multiple nodes responsible for the same key

® Concurrent lookups

Preventing Attacks

® Resistance of the DHT against Sybils

Preventing Attacks

® Resistance of the DHT against Sybils

® DHTs like Kademlia with ad-hoc guarantees

Preventing Attacks

® Resistance of the DHT against Sybils

® DHTs like Kademlia with ad-hoc guarantees
® Provably secure schemes (e.g., using committees + Byzantine agreement)

Preventing Attacks

® Resistance of the DHT against Sybils

® DHTs like Kademlia with ad-hoc guarantees
® Provably secure schemes (e.g., using committees + Byzantine agreement)

® Ease of Sybil creation

Preventing Attacks

® Resistance of the DHT against Sybils

® DHTs like Kademlia with ad-hoc guarantees
® Provably secure schemes (e.g., using committees + Byzantine agreement)

® Ease of Sybil creation

® Reducing the number of Sybils

Preventing Attacks

® Resistance of the DHT against Sybils

® DHTs like Kademlia with ad-hoc guarantees
® Provably secure schemes (e.g., using committees + Byzantine agreement)

® Ease of Sybil creation

® Reducing the number of Sybils
® Restricting free identifier choice

Preventing Attacks

® Resistance of the DHT against Sybils

® DHTs like Kademlia with ad-hoc guarantees
® Provably secure schemes (e.g., using committees + Byzantine agreement)

® Ease of Sybil creation

® Reducing the number of Sybils
® Restricting free identifier choice

Proof of work (PoW)

Proof of work (PoW)

Challenge c

Proof of work (PoW)

Challenge ¢

/—\ 71 <— PoW.Prove(c)
@ @

Nodg\/Peer

Proof

Proof of work (PoW)

Challenge c

/—\ 71 <— PoW.Prove(c)
@ @

Nodg\/Peer

Proof

Issues

Proof of work (PoW)

Challenge c

/—\ 71 <— PoW.Prove(c)

Nod\/Peer

Proof

Issues

1. DHT nodes usually don't have a lot of computing power

Proof of work (PoW)

Challenge c

/—\ 71 <— PoW.Prove(c)

Nod\/Peer

Proof

Issues

1. DHT nodes usually don't have a lot of computing power
= PoW difficulty cannot be too high
= No meaningful security (resource asymmetry)

Proof of work (PoW)

Challenge c

/—\ 71 <— PoW.Prove(c)

Nod\/Peer

Proof

Issues
1. DHT nodes usually don't have a lot of computing power
= PoW difficulty cannot be too high

= No meaningful security (resource asymmetry)

2. Wastes energy constantly

Wasting disk space

1. Synergy with storage applications (e.g., IPFS, data availability sampling)

12

Wasting disk space

1. Synergy with storage applications (e.g., IPFS, data availability sampling)

® Honest nodes usually have a lot of disk space (e.g., IPFS)

12

Wasting disk space

1. Synergy with storage applications (e.g., IPFS, data availability sampling)

® Honest nodes usually have a lot of disk space (e.g., IPFS)
® Meaningful security guarantees:

To control a large fraction of all nodes, the adversary must contribute a

large fraction of the total space dedicated to the application

12

Wasting disk space

1. Synergy with storage applications (e.g., IPFS, data availability sampling)

® Honest nodes usually have a lot of disk space (e.g., IPFS)
® Meaningful security guarantees:
To control a large fraction of all nodes, the adversary must contribute a

large fraction of the total space dedicated to the application

2. Energy efficient (after initial setup)

12

Proof of space (PoSp) : i ritccoin

File size N and seed

/ \

P \%

Proof of space (PoSp) : i ritccoin

File size N and seed

/ \

P \%

Initialization Phase

Online Phase

Proof of space (PoSp) : i ritccoin

File size N and seed

/ \

P V
Init file(seed)

Initialization Phase

Online Phase

Proof of space (PoSp) : i ritccoin

File size N and seed

/ \

P \%

Init file(seed) ¢ commitment to file

Y

Initialization Phase

Online Phase

Proof of space (PoSp) : i ritccoin

File size N and seed

/ \

P \%

Init file(seed) ¢ commitment to file

Y

¢ (mostly) consistent with file?

Y

<
<

Initialization Phase

Online Phase

Proof of space (PoSp) : i ritccoin

File size N and seed

/ \

P \%

Init file(seed) ¢ commitment to file

Y

¢ (mostly) consistent with file?

Y

<
<

Initialization Phase

Challenge ¢

A

Online Phase

Proof of space (PoSp) : i ritccoin

File size N and seed

/ \

P \%

Init file(seed) ¢ commitment to file

Y

¢ (mostly) consistent with file?

<
<

Y

Initialization Phase

Challenge ¢

A

Proof

Y

Online Phase

Proof of space (PoSp) : i ritccoin

File size N and seed

/ \

P \%

Init file(seed) ¢ commitment to file

Y

¢ (mostly) consistent with file?

Y

<
<

Initialization Phase

Challenge ¢

Proof G

A

Y

Online Phase

Proof of space (PoSp) : i ritccoin

File size N and seed
P V

Init file(seed) ¢ commitment to file

Y

Ty (Fiat-Shamir)

Y

Initialization Phase

Challenge ¢

Proof G

A

Y

Online Phase

Proofs of Space (PoSp)

® PoSp.Init(N, seed) — (file, ¢, 7r¢,) where |file| = N bits

Proofs of Space (PoSp)

® PoSp.Init(N, seed) — (file, ¢, ard)) where |file| = N bits
® PoSp.Prove(file, ¢,c) —

Proofs of Space (PoSp)

® PoSp.Init(N, seed) — (file, ¢, ard)) where |file| = N bits
® PoSp.Prove(file, ¢,c) —

e __.and verification algorithms

Proofs of Space (PoSp)

® PoSp.Init(N, seed) — (file, ¢, ard)) where |file| = N bits
® PoSp.Prove(file, ¢,c) —

e __.and verification algorithms

Space-hardness: A cheating prover
storing less than aN bits
running in less than p time(Init)
fails challenge c with probability at least p

Basic construction

Combines PoSp with existing DHT

Basic construction

Combines PoSp with existing DHT

Joining the DHT
Being added as a peer
While connected

Basic construction

Combines PoSp with existing DHT

Joining the DHT
Being added as a peer
While connected

Store (file, ¢, 7r¢) «— PoSp.Init(N, DHT.id)

Basic construction

Combines PoSp with existing DHT

Joining the DHT Store (file, ¢, 7r¢) — PoSp.Init(N, DHT.id)
Being added as apeer Send (¢, 7r¢) to them
While connected

Basic construction

Combines PoSp with existing DHT

Joining the DHT Store (file, ¢, 7r¢) — PoSp.Init(N, DHT.id)
Being added as a peer Send (¢, 7r¢) to them
While connected Every t seconds, receive k PoSp challenges ¢y, ..., ¢,

Reply 7r; < PoSp.Prove(file, ¢, c;) foreveryi € [k]

Security guarantee

The number of Sybil nodes f is bounded by

S
fe

except for exponentially small probability in A if
e number of challengesk = A/p

® challenge interval t < f time(Init)

Security guarantee

The number of Sybil nodes f is bounded by

S
fe

except for exponentially small probability in A if
e number of challengesk = A/p = boost detection probability

® challenge interval t < f time(Init)

Security guarantee

The number of Sybil nodes f is bounded by

S
fe

except for exponentially small probability in A if
e number of challengesk = A/p = boost detection probability

® challenge interval t < ftime(Init) = must use aN space

Security guarantee

The number of Sybil nodes f is bounded by

Every Sybil costs aN space
f < M <«
alN
except for exponentially small probability in A if
e number of challengesk = A/p = boost detection probability

® challenge interval t < ftime(Init) = must use aN space

Virtual nodes

Problem: Often want a bound on the fraction of Sybils f/n <y

Virtual nodes

Problem: Often want a bound on the fraction of Sybils f/n <y
Solution: Honest node with space S participates as 8S/N distinct identities

Virtual nodes

Problem: Often want a bound on the fraction of Sybils f/n <y
Solution: Honest node with space S participates as 8S/N distinct identities
= n grows linearly in the total honest space S,

Virtual nodes

Problem: Often want a bound on the fraction of Sybils f/n <y
Solution: Honest node with space S participates as 8S/N distinct identities
= n grows linearly in the total honest space S,

Security guarantee

f/n <yaslongasS,y, < const(a,y,d) - Syoy

Practicality?

Observation: Depends on the PoSp parameters a, S and p

Practicality?

Observation: Depends on the PoSp parameters a, S and p

Issue: Too many challenges (# of challenges « large, interval t small)

Practicality?

Observation: Depends on the PoSp parameters a, S and p

Issue: Too many challenges (# of challenges « large, interval t small)
= bandwidth too high

Practicality?

Observation: Depends on the PoSp parameters a, S and p

Issue: Too many challenges (# of challenges « large, interval t small)
= bandwidth too high

Solution: Improve protocol: Probabilistic challenges & time epochs

Improved protocol

\J

Improved protocol

\J

I *—
Add peer

Improved protocol

| *—
Add peer Wait

\J

Improved protocol

Pr[challenge attime t] = g
$ $ $

Add peer Wait

\J

Improved protocol

Pr[challenge attime t] = g
$ $ 3 $ $

Add peer Wait Use peer for DHT

Security guarantee

T = 4A/(pq) and ADV has space for f = S, /(aN) Sybils
=
at most 2f Sybils except for negl. probability in A

20

Security guarantee

T = 4A/(pq) and ADV has space for f = S,p,/(aN) Sybils
=
at most 2f Sybils except for negl. probability in A

Note that pq is that a probability that a peer is challenged and detected.

20

Security guarantee

T = 4A/(pq) and ADV has space for f = S,p,/(aN) Sybils
=
at most 2f Sybils except for negl. probability in A

Note that pq is that a probability that a peer is challenged and detected.

Improvements over basic scheme
1. Fewer challenges in expectation

2. No need to boost detection probability (constant p is fine)
20

Contributions Future work

® Using disk space to limit e Simulations/implementation

Sybils in DHTs e Don't waste space (e.g.,

® Simple & practical schemes backups)

® Theoretical analysis ® DHTs handling large f/n

[=]5
el

JFEMEnM U, Ginther and K. Pietrzak
Loy

[m] E=A -:: https://gnthr.eu/uploads/posp_dht_draft.pdf

I’ﬁﬁm Securing Distributed Hash Tables using Proofs of Space

