
Nakamoto Consensus from Multiple Resources

Mirza Ahad Baig
mirzaahad.baig@ista.ac.at

ISTA

Christoph U. Günther
cguenthe@ista.ac.at

ISTA

Krzysztof Pietrzak
pietrzak@ista.ac.at

ISTA

November 6, 2024

Abstract

The blocks in the Bitcoin blockchain “record” the amount of work W that went
into creating them through proofs of work. When honest parties control a majority
of the work, consensus is achieved by picking the chain with the highest recorded
weight. Resources other than work have been considered to secure such longest-chain
blockchains. In Chia, blocks record the amount of disk-space S (via a proof of space)
and sequential computational steps V (through a VDF).

In this paper, we ask what other weight functions Γ(S, V, W) (assigning a weight
to the recorded space, speed, and weight) are robust in the sense that whenever
the weight of the resources controlled by honest parties is larger than the weight of
adversarial parties, the blockchain is secure.

We completely classify such functions: Γ(S, V, W) is secure if and only if it’s
homogenous of degree one in the “timed” resources V and W , i.e., αΓ(S, V, W) =
Γ(S, αV, αW), and at most linear in S. This includes the Bitcoin rule Γ(S, V, W) =
W and the Chia rule Γ(S, V, W) = S · V .

Our classification is more general and allows various instantiations of the same
resource. It provides a powerful tool for designing new longest-chain blockchains.
E.g., consider combining different PoWs to counter centralization, say the Bitcoin
PoW W1 and a memory-hard PoW W2. Previous work suggested to use W1 + W2
as weight. Our results show that using e.g.,

√
W1 ·

√
W2 is also secure, and we argue

that it’s a much better choice.

1 Introduction
Achieving distributed consensus in a permissionless setting is seemingly impossible due
to Sybil attacks. In this setting, a malicious actor can create multiple fake identities
to prevent the protocol from achieving its goal. The Bitcoin blockchain overcame this
impossibility by proposing a mechanism based on hashing power rather than identities.

1

https://orcid.org/0000-0003-3650-7893
https://orcid.org/0009-0001-5790-695X

1.1 Bitcoin
The Bitcoin blockchain consists of a chain of blocks b1, b2 . . . that implements an immutable
decentralized ledger. A block bi = {φi, hi, πi, τi} contains three important values

φi The payload data, in Bitcoins case these simply transactions.

hi A hash hi = H(bi−1, φi) of the previous block and the current payload, it ensures that
the blockchain is a hash-chain and is used as PoW challenge.

πi A proof of work (PoW) on challenge hi.

τi A timestamp recording the time at which the block was produced.

The PoW is a nonce πi where the hash of π and the challenge hi is below some difficulty
D[bi], i.e., H(πi, hi) ≤ D[bi]. If we model H as a random oracle, finding a PoW for a
difficulty D requires D invocations of H in expectation. The parties contributing hashing
power are called miners. A miner will always try to extend the heaviest valid chain they
are aware of.

Longest-Chain Selection Rule. The hash function used in Bitcoin is SHA256, which
is believed to be collision resistant, so the inclusion of a hash hi of the previous block
ensures that blocks can only be attached sequentially. Unfortunately, this doesn’t prevent
forks, where a block bi is extended by two different blocks. When a miner sees two valid
chains like

BC1 = b1 . . . bi, bi+1, . . . , bi+f1 and BC2 = b1 . . . bi, b′
i+1, . . . , b′

i+f2 . (1)

Bitcoin mandates that miners should extend the “heavier” chain, where the weight
of BC1 is Γ(BC1) = ∑i+f1

i=0 D[bi] (Γ(BC2) is defined analogously). So the weight of a chain
captures the number of hashes required to create it. For Bitcoin, this rule is usually called
the longest chain rule (instead of heaviest chain rule). The reason is that the longest chain
is usually the heaviest because of Bitcoin’s difficulty adjustment mechanism. Bitcoin aims
to keep the block creation time constant. To this end, since the amount of computational
resources dedicated to Bitcoin generally increases (cf. Fig. 1), Bitcoin adjusts the difficulty
every two weeks. So, for short forks, the longer chain is usually the heavier one.

Figure 1: The work contributed towards securing Bitcoin (bitcoinvisuals.com)

2

bitcoinvisuals.com

The forks observed in Bitcoin are mostly due to the fact that two honest miners find
a block extending the same block before hearing about each other, they can also be an
indication of an attack. The two most relevant types of attacks are selfish mining or
double-spending. In selfish mining [ES14] a malicious miner deviates from the prescribed
mining strategy in order to mine a larger fraction of blocks than its fair share. In a double
spending attack an adversary tries to create a fork in private (i.e., without immediately
releasing the found blocks), and at some point releases this entire fork which should be
heavier than the current honest chain.

1.2 Beyond PoW
Bitcoin’s use of PoW to secure its blockchain comes with numerous issues. One is the
ecological footprint, to be secure the honest miners must constantly compute more hashes
than a potential adversary could. Moreover, the mining hardware consists of highly
specialized ASICs which are almost all produced by a single company, which leads to
centralization. To address these issues, alternatives to proofs of work have been considered
to secure longest-chain blockchains.

The most popular and best investigated alternative is proof of stake (PoStake), where
the currency as recorded on the chain is used as the resource for consensus. This is great
from a sustainability perspective as no physical resource is wasted for consensus, there’s
just an opportunity cost as staked coins cannot be used for other means. From a security
perspective, PoStake is more delicate to work with, and some argue that it’s impossible
to get a secure blockchain without using some resource external to the chain [TTG+23].

After computation, the most natural resource is arguably space. Defining the right
notion for the space analog of PoWs is not entirely trivial. While it’s clear what wasting
computation means, with space one has to take two dimensions into account, namely the
amount of space and the time for which it’s locked. This has been done with the notion
of Proofs of Space (PoSpace) which was introduced by Dziembowski et al. [DFKP15].

A PoSpace has two phases. The first is an initialization phase where a prover P can
lock some amount N of space by initializing it with data (called a plot). As P must at
least touch all of its space, this phase must take computation at least N , and ideally
should not require much more. The second phase is the proof phase. Here the prover,
given a random challenge c computes a proof π. This proof can be publicly verified and
very efficiently computed, in particular, the prover only needs to touch a tiny fraction of
the plot. The security requirement of a PoSpace states that a malicious prover P̃ who
stores a file that is somewhat smaller than N , will not be able to efficiently reply to a
random challenge.

PoSpace & Spacemint. A proposal which basically preplaces PoW with PoSpace in
Bitcoin is Spacemint [PKF+18]. Unfortunately, this opens several new attack vectors that
one needs to deal with which we summarize below1

grinding While in a PoW based chain, one must dedicate resource towards extending a
particular block in a particular way, using an efficient proof system like PoSpace
one can “grind” through many options of blocks (by e.g. using different subsets of

1Based on §2 in https://docs.chia.net/longest-chain-protocols/

3

https://docs.chia.net/longest-chain-protocols/

transactions) until one finds a “good” proof. [PKF+18] proposes an easy fix, by
splitting the chain in a part that only contains the proofs and another that contains
all the grindable data.

double-dipping Even if grinding is no longer possible, an adversary can still try to
extend all blocks they’re aware of, this way creating a tree rather than just a chain,
this strategy can speed up chain creation by even a factor e = 2.72. An elegant
way to address this (used, e.g., in Chia) proposed by [BDK+22] is to use correlated
randomness. Basically, one uses the same challenge for multiple blocks, this reduces
the advantage of double-dipping very fast.

replotting An adversary holding space S can re-initialize this space some k ≥ 1 times to
create a block that looks as if it had (k + 1)S space. Replotting is not much of an
issue if blocks must be created at a sufficiently high rate and replotting takes a long
time, but one must be careful as we’ll see in § 1.9.

bootstrapping As computing a PoSpace is very cheap once the resource is available, an
adversary holding some space S during a short period of time can easily bootstrap
a long chain pretending to have been created over a long period of time, and thus
having required S space for a long time. While Spacemint did not have a satisfying
mechanism against bootstrapping, Chia solved this using Proofs of Space and Time
(suggested by Bram Cohen) which combine proofs of space with verifiable delay
function [BBBF18].

1.3 Modelling Resources
In this work, we consider three types of physical resources: work, space, and speed
(of a VDF) and reserve the letters S, W , and V (for velocity) for them. For a resource
R ∈ {S, W, V }, we’ll denote with RH(t) and RA(t) the amount of the resource R available
at (clock) time t to the honest and adversarial parties, respectively. In practice, one needs
to assign some concrete proof system for each resource. The reader can think of W as
the number of SHA256 hashes per second, V as the number of sequential steps in the
Chia VDF and S is the amount of disk space in bits that can be initialized for the Chia
proof of space. For now, we assume that there’s just one type of each resource, our actual
results are more general and capture the setting where we have multiple resources of each
type. Work W and space S are quantitative resources in the sense that having twice
as many cores or disks will double the amount of the resource, while V is a qualitative
resource. It doesn’t matter if one has one or a billion VDFs, it only matters how fast the
VDF is. The units of W and V are total computations (e.g. hashes) and sequential steps
(e.g., squarings) per second, for this reason, we’ll refer to V and W as timed resources.

1.4 Idealized Longest-Chain Blockchains
Longest-chain Blockchains like Bitcoin or Chia record the amount of resources in discrete
blocks, in Bitcoin only once around every 10 minutes, and in Chia every 10 seconds.
Moreover, the quantitative resources (work in Bitcoin, Space in Chia) are recorded by
including every proof of work/space that passes some difficulty, this only allows for a good

4

estimation of the existing resources after sufficiently many blocks. We will first consider
an idealized notion of blockchains that ignores those issues, and where the resources are
continuously and correctly recorded.

Consider a time interval [0, T] (think of time 0 as the (clock) time where an adversary
will start creating a fork, and T the time when they release this fork). At time t ∈ [0, T]
the honest and adversarial parties have resources

RH(t) = (SH(t), V H(t), W H(t)) and RA(t) = (SA(t), V A(t), W A(t))

Idealized Honest Chain ICH. The honest parties will dedicate all their resources
towards creating our (idealized) chain ICH, while the adversary can choose to contribute
whatever they want, so for any t ∈ [0, T] the honest chain is ICH(t) = (S, V, W) where

• S ∈ [SH(t), SH(t) + SA(t)] and W ∈ [W H(t), W H(t) + W A(t)] as the adversary can
choose to dedicate any fraction of its space and work on top of the honest resources.

• V ∈ [V H(t), max{V H(t), V A(t)}]. Note that the adversary can only change this
speed resource if V A(t) > V H(t), i.e., the adversary has a faster VDF than the
fastest honest party.

The goal of this paper is to classify secure weight functions, and for this, it’s easy to see
that one can without loss of generality assume that an adversary does not contribute
resources towards creating the honest chain, so wlog. the idealized honest chain will simply
reflect the honest resources ICH = RH.

Idealized Adversarial Chain ICA. In § 1.4 we discussed how the idealized honest
chain simply reflects the honest resources ICH = RH. So it not only reflects the resources
correctly, but also correctly keeps track at what time exactly those resources were available.
While this is by construction in our idealized setting, time-stamps are accurate in general in
longest-chain blockchains even if a not too powerful adversary tries to disrupt them [TSZ23]

The adversary, on the other hand, may divert from the honest strategy by creating
their chain ICA. First, they may simply not use some of the resources available to
them. Second, more importantly, an adversary who creates a fork in private may not
respect time-stamps, so they can “stretch” and “squeeze” time as they want. We model
this stretching and squeezing by function ϕ(t). ϕ(t) > 1 means that time runs slower,
i.e., it is stretched. Conversely, ϕ(t) < 1 causes time to run faster, i.e., it is squeezed.
ϕ(t) = 1 means time is not altered. Doing this, the resources recorded on chain are
(SA(t), ϕ(t)V A(t), ϕ(t)W A(t)), so the timed resources (W, V) are multiplied by ϕ, but S
is not.

As a concrete setting, consider an adversary against Bitcoin who has hashing power
W A(t) at time t. Assume with the current difficulty D, W A(t) allows creating blocks
every 1199 seconds (20 minutes), which for Bitcoin holds if D/W A(t) = 1200. No matter
what the adversary does, they’ll only be able to compute one new block every 20 minutes,
but they can lie about the time-stamps recorded in the fork they creates. If the pretends
the time-stamps are only 10 minutes apart, it looks as if the work that went into creating
the fork (at this point) is 2W A(t). For the example just given, ϕ(t) = 2. If the adversary
uses time-stamps that are 39 minutes apart this would correspond to choosing ϕ(t) = 0.5.
Fig. 2 illustrates a more elaborate example.

5

W̃

ϕ

W

time time1 2

Real Squeezed/stretched
2.0

0.5

1.0

1 2

1.5

Figure 2: Bitcoin’s weight function Γ(W) = W . The left plot shows the real W and the
squeezing/stretching function ϕ; the right shows W̃ resulting from squeezing/stretching
W according to ϕ. Note that

∫
W =

∫
W̃ , so the weight stays the same.

In Chia the chain consists of VDF outputs alternating with Proofs of Space. Here, an
adversary can also stretch and squeeze the adversarial fork by lying about the timestamps,
say at (clock) time t the adversary pretends the VDF runs ϕ(t) times as fast as it actually
does. While the actual resources of the adversary are V A(t) and SA(t), the resource
recorded on chain is ϕ(t) · V A(t) and SA(t). Note that only the VDF speed V A, but
not the space SA is affected by stretching or squeezing. Only timed resources work W
and speed V are affected by stretching or squeezing. Fig. 3 illustrates a more elaborate
example.

Ṽ

S̃
V

S

ϕ

1 2 time

S̃ · Ṽ

1 2 time

S · V

1 2 time

Real Squeezed/stretched

2.0

0.5

1.0

1 2 time

4.0

3.0

Figure 3: Chia’s weight function Γ(S, V) = S · V . The first plot shows the real
resources S, V together with the squeezing/stretching function ϕ; the second shows
Γ(S, V) = S · V and its integral (shaded). The third plot shows the resources S̃, Ṽ
resulting from squeezing/stretching S, V according to ϕ; the fourth Γ(S̃, Ṽ) = S̃ · Ṽ and
its integral (shaded). Note that

∫
S · V =

∫
S̃ · Ṽ , so the weight stays the same.

To get an intuition for the results of this paper, it’s useful to understand why Bitcoin
and Chia prevent double spending against attackers that hold less than half the resource
despite the ability of an adversary to stretch and squeeze a private fork. In a nutshell, the
reason is that stretching or squeezing doesn’t change the weight of the created chain. In
Bitcoin this is obvious as the weight of a chain is simply the sum over all blocks multiplied

6

by their difficulty, and stretching and squeezing obviously doesn’t help to find more blocks.
A more (for this work) useful view is to say that the weight of a chain segment that claims
(through its time stamps) to have required time T to create is T multiplied by the average
work W that was used towards creating this segment, i.e., W A · T . Now an adversary can,
say, squeeze the chain by a factor ϕ(t) = 2, this way multiplying the average work by a
factor of 2, but they will only be able to create a chain that pretends to have used time
T/ϕ(t), so the weight will be the same (W A · ϕ)(T/ϕ(t)) = W A · T as if they had just
used honest timestamps, i.e., ϕ(t) = 2 throughout.

Note that the above argument would not hold if Bitcoin had defined the weight of the
chain as a function of the hashing power other than linear, say

√
W A or (W A)1, and the

results of this paper explain why this in fact would not be secure.
Similarly, in Chia an adversary with resources SA and V A can pretend the VDF used

to create its private chain runs at some speed ϕ · V A, ϕ ≠ 0 by using wrongly spaced time
stamps. This will change the weight of the created chain from V ASA per time unit to
ϕ · V ASA, but the time required to create a chain segment (claiming to take some fixed
time) also changes by a factor ϕ.

Finally, let us note that stretching and squeezing also captures bootstrapping against a
blockchain like Spacemint where the weight is simply the recorded space. An adversary
can pick some short time window [t, t + ϵ] where they happen to hold a lot of space
SA(t) = S, and then create a chain which records space S for a long time window [0, T]
by setting ϕ(t′) = T/ϵ if t′ ∈ [t, t + ϵ] and 0 otherwise. This captures a bootstrapping
attack where at clock time [t, t + ϵ] a chain of length T is boostrapped.

1.5 Weight Function
A key notion in this work is of a weight function Γ : R3 → R of a resource-based longest-
chain blockchain. It assigns to a triple of resources considered in this work a weight
Γ(S, V, W). We can think of Bitcoin’s, Chia’s, and Spacemint’s weight functions as

ΓBitcoin(S, V, W) = W , ΓChia(S, V, W) = S · V , ΓSpacemint(S, V, W) = S

Such a Γ can be applied to a resource profile or a chain, e.g., we say that the honest
parties have resources of weight Γ(RH(t)) = Γ(SH(t), V H(t), W H(t)) at time t. As the
honest chain perfectly reflects the honest resources, i.e., ICH = RH, also the weight of
the chain is the same as the weight of the resource profile, i.e., Γ(RH(t)) = Γ(ICH(t)).
For the adversarial chain, this must not be the case as it’s derived from the adversarial
resources through stretching and squeezing.

A weight function Γ captures the resources at a particular point in time, but chain
selection rules in chains like Bitcoin or Chia compare the weight of chain segments, i.e., the
competing forks. The weight is computed by adding up the weights of the blocks. In our
idealized continuous setting, we naturally define the weight of an idealized chain segment or
resources over some time period as an integral. Say resources R = (S, V, W) are defined for
some time interval [0, T], then we define their weight as Γ(R) :=

∫ T
0 Γ(S(t), V (t), W (t)) dt.

7

1.6 Persistence for Idealized Chains
The main security property of resource-based longest-chain blockchains like Bitcoin or
Chia is persistence, which states that under the assumption that honest parties control
more resources than an adversary, committed blocks will stay in the chain forever. To
prove this one must show that the adversary will not be able to create a forked chain that
is heavier than the honest one.

To model persistence in our idealized setting, consider a security game where we
let an adversary choose the length T for the attack and two resource profiles defined
for time [0, T]: the honest one RH and their own, adversarial, one RA. The only
constraint is that the weight of the honest resources must always be at least as high as
the adversarial one ∀t ∈ [0, T] : Γ(RH(t)) ≥ Γ(RA(t)) and strictly larger in some interval
∃t0 < t1 ∀t ∈ [t0, t1] : Γ(RH(t)) > Γ(RA(t)].

We now define the honest chain as ICH = RH, i.e., it perfectly reflects the honest
resources, while the adversary can create their adversarial chain ICA by first “pruning”
RA by arbitrary lowering their resources at any point, and then choose a deformation
function ϕ : [0, T] → R which defines how the (pruned) resources are RA used to create
ICA (Def. 6).

The adversary wins, i.e., breaks persistency, if the honest chain does not have higher
weight than the adversarial one, i.e., Γ(ICA) ≥ Γ(ICH) as this captures a case where the
chain-selection rule would pick the adversarial chain as the winner.

1.7 Secure Blockchain from Robust Weight Functions
We call a weight function robust if its usage in a longest-chain blockchain implies
persistence in the sense that one can’t win the game outlined in the previous section.
An adversary can always create an adversarial chain whose weight reflects its resources
Γ(ICA) = Γ(RA), so for Γ to be robust it is sufficient (and as we’ll show, also necessary)
to ensure that for any resource profiles R and R′ where R′ can be derived from R by
pruning and then applying some ϕ, we always have Γ(R) ≥ Γ(R′).

To rule out that pruning is of any use one must require that Γ is monotone, i.e.,
S ′ ≥ S, V ′ ≥ V, W ′ ≥ W ⇒ Γ(S ′, V ′, W ′) ≥ Γ(S, V, W).

To ensure that stretching and squeezing R will not change the weight Γ(R) we need
to require that R is homogeneous of degree one in the timed resources, which means
that multiplying the weight and speed by some constant α increases the weight by α,
i.e., Γ(S, αV, αW) = α Γ(S, V, W). The intuition for his is simple (we sketch it for the
special case of the Bitcoin and Chia chains in ??): while creating the fork an adversary
can stretch or squeeze its resources V A, W A so they appear as if they were ϕV A, ϕW A

(for some ϕ ̸= 1) on the created fork, but this takes ϕ as much time as if they were doing
it honestly, i.e., ϕ = 1. If Γ is homogeneous, using ϕ ̸= 1 will not change the weight of the
created segment of the chain as it will have weight ϕ times what it would in the ϕ = 1
case, but the length of the segment also changes to 1/ϕ.

Thm. 1 in this paper states that a monotone and homogeneous weight function is
robust and that these conditions are also necessary.

8

1.8 Discrete Blocks
So far we considered a strongly idealized setting where the blockchain recorded the available
resources continuously and exactly, both can not be met in a practical blockchain2 where
the quantitative resource S or W is distributed over an a priori unlimited number of
miners, but for practical reasons we only want a bounded number to actually give input
to a block. In Bitcoin and Chia, it’s just a single miner that finds a proof that passes
some difficulty, and the frequency at which such proofs are found gives an indication of
the total resource.

We can get a good approximation of the resources by waiting for sufficiently many
blocks or using a design where multiple miners contribute to a block, say we record
some k > 1 best proofs found since the last block in every block. In this work, we will
not further deal with the fact that resources are not exactly recorded as it’s not very
interesting. In actual constructions like Bitcoin one deals with this by requiring some
time before considering blocks as confirmed.3

Relaxing the assumption that the resources are not recorded continuously on the other
hand makes a qualitative difference. We’ll discuss in § 5 in detail how to extend our result
to this setting, giving a high-level overview in this introduction.

To model discrete blocks, we assume the honest blocks are created at discrete times
t1 = 0 < t2 < t3 < . . . tℓ = T . The ith block recording the resources in the timeslot
[ti, ti+1]. Recall that in the idealized model, the contribution to the weight of the honest
chain at that timeslot would be∫ ti+1

ti

Γ(SH(t), V H(t), W H(t)) dt (2)

In the discrete model, we only assume that the ith block bi records the total contribution
of the timed resources in that time window, namely

V■(bi) =
∫ ti+1

ti

V H(t) dt and W■(bi) =
∫ ti+1

ti

W H(t) dt.

The block also needs to record the space. Space is not a timed resource that is accumulated
over time, so the block must just reflect a snapshot of the space that is available at some
point during block creation. As we can’t force an adversary to take that snapshot at a
particular time, in the security game we’ll simply assume that for honest parties, the block
bi reflects the minimum space during that time slot S■(bi) = minti≤t≤ti+1 SH(t) while for
the adversary it will be the maximum. With these definitions, the weight of a block is

Γ(S■(bi), V■(bi), W■(bi)) (3)
and the weight of a chain is the sum of the weights of the blocks.4 Like in the idealized
setting, the adversary attacking the persistence of the chain can stretch and squeeze the

2At least not if they use a quantitative resource S or W , which only leaves V , but speed alone will not
make a good chain as we’ll discuss in § 2.2.

3The number of blocks to wait is computed using a tail inequality, it depends on the probability of
failure one can accept and on the quantitative gap one assumes between honest and adversarial resources.

4An equivalent (potentially more intuitive) definition is to say that the weight of the block is defined like
in the idealized continuous setting, but the timed resources are replaced with their average over [ti, ti+1],
and the space is set to its minimum value. This is the same as

∫ ti+1
ti

Γ(S■(bi), V■(bi)
ti+1−ti

, W■(bi)
ti+1−ti

) = (ti+1 −
ti) Γ(S■(bi), V■(bi)

ti+1−ti
, W■(bi)

ti+1−ti
) = Γ(S■(bi), V■(bi), W■(bi)) where the last step used that Γ is homogeneous in

the timed resources.

9

chain, which here simply means that they can arbitrarily choose the time slots in which
they create the block as illustrated in Fig. 5.

1.9 Security in the Discrete Model
Thm. 2 states our main result in the discrete setting. To argue that a blockchain is
persistent in the discrete setting, we need some extra assumptions compared to the
continuous model. In particular, we’ll assume that the amount of resources does not
change by too much within a block, and we’ll need to assume some actual quantitative gap
between the honest and adversarial resources. We’ll also have to put an extra restriction
on the weight function to handle replotting attacks which only make sense in the discrete
case.

Smoothness. Note that when resources are constant over time, the weight in the
continuous setting (Eq. (2)) equals the weight of the discrete block (Eq. (3)). While
in general they can arbitrarily deviate, we show (Corollary 1) that assuming that the
weight of the resources vary smoothly and only change by at most some factor 1 ± ε
(say ε = 0.01, which means a 1% fluctuation), we get persistence under almost the same
conditions as in the continuous setting (the weight of honest resources is larger than the
weight of adversarial ones), we just need to additionally discount the adversarial resources
by a factor of (1 + ε)2 ≈ (1 + 2ε).

Replotting. Once we move from a continuous to the discrete setting space replotting
becomes an issue. Recall that this refers to attacks where an adversary with space S who
is about to create a block re-initializes this space k times, so they can create a block that
looks as if they had space S(k + 1). In Blockchains like Chia replotting attacks aren’t
much of an issue.5

Instead of the Chia weight function Γ(S, V) = SV , one could consider a robust weight
function that assigns superlinear weight in the space, say Γ(S, V) = S2V . Now the
weight of a block can be increased quadratically in the time used, so replotting will after
some time create a heavier block than honest mining would. To address this issue, we
additionally (to robustness) require that Γ is at most linear in S. More generally, for the
case where we have multiple proofs of space, Γ must be sub-homogenous in those.

2 New Longest-Chain Blockchains?
Having a complete classification of all longest-chain blockchains based on work, space, and
speed we can now investigate this space to find new interesting designs. Homogenous and
sub-homogenous functions, in particular those of degree one as used in our classification,
are extensively used in economics, where different functions are used to capture different
scenarios. Similarly, using different weight functions we can design blockchains that
capture different resources and incentive structures.

5Informally, this has to do with the fact that replotting increases the space, and thus the weight of the
created block, only linearly. As replotting takes longer than the time for the VDF computation required
for a block, one can create a heavier weight simply by following the honest strategy.

10

2.1 Decentralized PoW
While Bitcoin is perceived as being very decentralized, the reality is that mining happens
on highly optimized hardware, and the production of this hardware is very centralized.
To create a more decentralized PoW-based blockchain it’s natural to consider using
different types of PoW for the same blockchain, say Bitcoin’s SHA256-based PoW (which
is computed on ASICs), a PoW based on a memory-hard function (where the hardware
cost is dominated by memory modules) and a PoW which is designed to be best evaluated
on FPGAs.

Given such PoWs W = (W1, W2, . . . , Wk), the question is what weight function Γ(W)
to use. The most natural idea, e.g., investigated by Minotaur [FWK+22], is to simply
sum up the resources, potentially using weights ω to calibrate the contribution of each
Γ(W1, . . . , Wk) = ∑k

i=1 ωiWi.
The problem with this weight function is that in practice it would not lead to decen-

tralization, instead, most of the weight will come from the PoW that is cheapest. Our
results show that instead of the sum, we can use any other homogeneous weight function.
A much better option is

Γ(W1, . . . , Wk) =
k∏

i=1
ωiW

1/k
i .

With this formula, whenever the amount of some particular PoW Wi increases, its
contribution to the weight for an additional increase decreases. To maximize the weight
given some fixed budget for PoWs, one would thus have to invest in all PoWs at a similar
rate. The intuition here is similar to the ideas behind automated market makers. Fig. 4
depicts the example

√
W1

√
W2 and also shows why W1 · W2 is not secure.

Yet another option is the Leontief utilities function6

Γ(W1, . . . , Wk) = min
{

W1

ω1
, . . . ,

Wk

ωk

}
which one might consider if we want to guarantee that all PoWs must significantly
contribute.

2.2 Speed is all you Need?
Not every robust weight function makes a meaningful blockchain design, an example is a
weight function Γ(V) = V that only depends on the VDF speed. Our result implies that
under the assumption that the honest parties at any point control a faster VDF than the
adversary, we can get a secure blockchain. In practice that wouldn’t be a good design
because V is a qualitative resource. The assumption that the honest speed is always
greater than the adversarial one is strange, but even if we’re willing to make it, in such a
blockchain the single honest party holding the fastest VDF would be able to decide on all
the blocks to include in the chain.

We are only aware of two practical longest-chain blockchains based on physical resources,
Bitcoin and Chia. They use a timed resource (V or W), which is necessary for security,
and a quantitative resource (W or S) to get meaningful decentralization. W is timed and

6https://en.wikipedia.org/wiki/Leontief_utilities

11

https://en.wikipedia.org/wiki/Leontief_utilities

W1

W2

ϕ W̃1

W̃2

W1 ·W2

W̃1 · W̃2

√
W1 ·W2

√
W̃1 · W̃2

1 2

1 2

Real Stretched/squeezed

1 2

0.5

1.0

2.0

1.5

1 2

0.5

1.0

2.0

1.5

time time

time time

Non-robust Γ Robust Γ′

Figure 4: Consider two PoWs W1, W2, and two weight functions Γ(W1, W2) = W1 · W2
and Γ′(W1, W2) =

√
W1 · W2. The top row show the real W1, W2 (left) and how squeezing

them by ϕ(·) = 2 (left) results in W̃1, W̃2 (right). The bottom row shows that Γ is not
robust because

∫ 2
0 W · V <

∫ 1
0 W̃ · Ṽ , i.e., squeezing increases the weight. In contrast, Γ′

is robust, so squeezing does not affect the weight.

quantitative, so it can be used as the sole resource in Bitcoin, in Chia S is the quantitative
resource, while V is the timed resource (and S · V is the weight).

Even without considering multiple resources of the same type as done in the previous
section, there are plenty of other robust weight functions combining timed and quantitative
resources, say S · W or

√
V · W that one can consider. We leave the exploration of this

space to future work.

3 Preliminaries
Let [n] = {1, . . . , n}. Vectors are typeset as bold-face, e.g., x. R>0 and R≥0 denote the
set of positive real numbers excluding and including 0, respectively. Given two tuples
(x1, . . . , xn), (x′

1, . . . , x′
n) ∈ Rn

>0 we say (x1, . . . , xn) ≤ (x′
1, . . . , x′

n) if xi ≤ x′
i for all i ∈ [n]

with equality holding if and only if xi = x′
i for all i ∈ [n].

We denote by t ∈ R≥0 the time. For T0, T1 ∈ R≥0 where T0 < T1, [T0, T1] denotes the
time interval starting at T0 and ending at T1. We denote with open interval (T0, T1] the
time interval [T0, T1] excluding T0. Similarly for [T0, T1).

12

Definition 1 (Monotonicity). A function f : Rn
>0 → R>0 is monotonically increasing if

(x1, . . . , xn) ≤ (x′
1, . . . , x′

n) =⇒ f(x1, . . . , xn) ≤ f(x′
1, . . . , x′

n).

Definition 2 (Homogeneity). A function f : Rn
>0 → R>0 is homogeneous7 in xj, . . . , xn

with 0 ≤ j ≤ n if, for all (x1, . . . , xn) ∈ Rn
>0 and α > 0,

f(x1, . . . , xj−1, α · xj, . . . , α · xn) = α · f(x1, . . . , xj−1, xj, . . . , xn)

Definition 3 (Sub-homogeneity). A function f : Rn
>0 → R>0 is sub-homogeneous in

x0, . . . , xj with 0 ≤ j ≤ n if, for all (x1, . . . , xn) ∈ Rn
>0 and α ≥ 1,

f(α · x0, . . . , α · xj, xj+0, . . . , xn) ≤ α · f(x0, . . . , xj, xj+0, . . . , xn).

4 Ideal Chain Model
In the ideal chain model, time is a continuous variable t ∈ R≥0. Physical resources come
in three types: Space, VDF speed, and hash rate for PoW denoted by the capital letters
S, V , and W , respectively. There might be multiple resources per type, e.g., two PoWs
W1 and W2. We capture this using vectors S := (S1, . . . , Sk1), V := (V1, . . . , Vk2), and
W := (W1, . . . , Wk3). Here, k1, k2, and k3 are the number of spaces, VDFs, and PoWs;
we omit them unless needed for clarity. We use superscripts ◦A/◦H to denote resources,
variables, etc. belonging to the adversary/honest parties. VDF and work are timed while
space is not.

Definition 4 (Resource Profile). A resource profile R is a 3-tuple of functions

R := (S(t), V (t), W (t))[0,T]

with domain t ∈ [0, T] where T > 0 and range R>0.

A resource profile describes the amount of each resource party has at any point in
time. We assume that all Si(t), Vi(t), and Wi(t) are Riemann integrable over t. This is
a reasonable assumption since we are approximating a real-life scenario that is discrete,
hence Riemann integrable.

An ideal chain reflects the resources that were expended in creating it. We call these
reflected resources a chain profile. Syntactically, a chain profile is a resource profile. The
difference lies in semantics: A resource profile describes the resources available to honest
parties/the adversary in reality. Meanwhile, a chain profile describes the resources that
the chain reflects.

Definition 5 (Chain Profile). An (ideal) chain profile IC is a 3-tuple of functions

IC := (S(t), V (t), W (t))[0,T]

with domain t ∈ [0, T] where T > 0 and range R>0.
7More precisely, f is positively homogeneous functions of degree 1. However, we will not need

homogeneity of higher degree, so we simply call it “homogeneous”.

13

Looking ahead, an honest party’s chain profile is equivalent to their resource profile,
i.e., ICH = RH. The adversary, however, may cheat, so ICA might differ from RA. In
particular, they might pretend to have less resources than they actually have, or they
might squeeze or stretch the time. We model this time manipulation by a function ϕ(t)
describing the squeezing/stretching factor at any point in time. At time t, ϕ(t) > 1
represents squeezing, ϕ(t) < 1 stretching, and ϕ(t) = 1 no modification.

Squeezing/stretching alters time stamps, e.g., it might change the length of the interval
[0, Tend]. We use ◦̃ to denote time after squeezing/stretching. For example, the resulting
interval is [0, T̃end]. To translate between the time before and after squeezing/stretching,
we use the altered time function AT (and its inverse AT−1), e.g., AT(Tend) = T̃end. Formally,

Definition 6 (Adversarial Chain Profile Cheating). Consider a resource profile RA =
(SA(t), V A(t), W A(t))[0,Tend] and some function ϕ(t) : [0, Tend] → R>0. Define AT(t) :=∫ t

0
1

ϕ(u) du and its inverse AT−1(·).8

Let T̃end := AT(Tend). An adversarial chain profile is any chain profile

ICA = (S̃A(t̃), Ṽ A(t̃), W̃ A
i (t̃))[0,T̃end]

where S̃A
i (t), Ṽ A

i (t) and W̃ A
i (t) are Riemann integrable over t, and satisfy

0 < S̃A(t̃) ≤ SA(t)
0 < Ṽ A(t̃) ≤ ϕ(t) · V A(t)
0 < W̃ A(t̃) ≤ ϕ(t) · W A(t)

for all t̃ ∈ [0, T̃end] with t = AT−1(t̃).

With the definition of chain profiles out of the way, we can now define the weight of a
chain. The weight is computed using the weight function Γ.

Definition 7 (Weight Function). A weight function is given by

Γ: Rk1
>0 × Rk2

>0 × Rk3
>0 → R>0.

As defined above, Γ takes three resources as input and computes the weight of a
specific point in time. In the next step, we extend Γ to compute the weight of the whole
chain. We denote this function by Γ. Overloading notation slightly, it takes a chain (or
resource) profile as input and outputs the weight of the chain (or resource) profile.

Definition 8 (Weight of a Resource or Chain Profile). Consider a weight function Γ and
a resource R = (S(t), V (t), W (t))[0,T] or chain profile IC = (S(t), V (t), W (t))[0,T]. The
weight function Γ is defined as

Γ(R) :=
∫ T

0
Γ(S(t), V (t), W (t)) dt

and
Γ(IC) :=

∫ T

0
Γ(S(t), V (t), W (t)) dt.

8AT−1 exists because 1
ϕ(u) > 0 for all u, so

∫ t

0
1

ϕ(u) du is a monotonically increasing function of t with
co-domain [0, AT(Tend)].

14

There are many possible choices for Γ, but not all are good choices for a blockchain.
Recall the example W1 · W2 from where the adversary can cheat (i.e., gain more weight)
by squeezing the time. We call a function robust if it resists such attacks. So even if the
adversary starts out with a resource profile RA which is only slightly below the resource
profile of all honest parties RH, then every adversarial chain profile ICA (in the sense of
Def. 6) has a lower weight than the honest one ICH = RH.

Definition 9 (Robust Weight Function). A weight function Γ is robust if for all RH =
(SH(t), V H(t), W H(t))[0,Tend] and

RA = (SA(t), V A(t), W A(t))[0,Tend] such that

Γ(SA(t), V A(t), W A(t)) ≤ Γ(SH(t), V H(t), W H(t)) ∀t ∈ [0, Tend]

and for a time interval [T0, T1]

Γ(SA(t), V A(t), W A(t)) < Γ(SH(t), V H(t), W H(t)) ∀t ∈ [T0, T1]

it holds that
Γ(ICH) > Γ(ICA)

where ICH := RH and ICA satisfies Def. 6 for RA and any ϕ(t). If no RH and RA

satisfying the condition above exists then we say Γ is not robust.

Note that Def. 9 rules out that a constant function, Γ = c, is robust as there exist no
points in the resource profile space where the weight differs and hence we cannot choose
resource profiles satisfying the conditions in Def. 9.

Our main result completely characterizes robust weight functions.

Theorem 1 (Robust Weight Functions). A weight function Γ is robust if and only if
Γ(S, V , W) is monotonically increasing and homogeneous in V , W .

Proof. The three lemmata below prove the “if” (Lem. 1) and “only if” (Lems. 2 and 3)
directions separately.

Lemma 1. If Γ(S, V , W) is monotonically increasing and Γ(S, V , W) is homogeneous
in V , W , then Γ(RA) ≥ Γ < ICA) where ICA satisfies Def. 6 for RA and any ϕ(t).

As a consequence, Γ is robust if Γ(S, V , W) is monotonically increasing and Γ(S, V , W)
is homogeneous in V , W .

Proof. For the first part of the lemma, consider the adversarial chain profile ICA

from Def. 6. For any t̃ ∈ [0, T̃end], A could create a chain profile such that

0 < S̃A(t̃) ≤ SA(AT−1(t̃)),
0 < Ṽ A(t̃) ≤ ϕ(AT−1(t̃)) · V A(AT−1(t̃)),
0 < W̃ A(t̃) ≤ ϕ(AT−1(t̃)) · W A(AT−1(t̃)).

Since Γ is monotonic,

Γ(S̃A(t̃), Ṽ A(t̃), W̃ A(t̃)) ≤
Γ(SA(AT−1(t̃)), ϕ(AT−1(t̃)) · V A(AT−1(t̃)), ϕ(AT−1(t̃)) · W A(AT−1(t̃)))

15

holds for all t̃ ∈ [0, T̃end]. Since Γ is also homogeneous in V , W ,

Γ(S̃A(t̃), Ṽ A(t̃), W̃ A(t̃)) ≤
ϕ(AT−1(t̃)) · Γ(SA(AT−1(t̃)), V A(AT−1(t̃)), W A(AT−1(t̃))),

so we can conclude that

Γ(ICA) =
∫ T̃end

0
Γ(S̃A(t̃), Ṽ A(t̃), W̃ A(t̃)) dt̃

≤
∫ T̃end

0
ϕ(AT−1(t̃)) · Γ(SA(AT−1(t̃)), V A(AT−1(t̃)), W A(AT−1(t̃))) dt̃.

Now, we integrate by substituting9 t = AT−1(t̃). Here, note that d

dt̃
AT−1(t̃) =

ϕ(AT−1(t̃)) by the inverse function rule.10 This leads to

Γ(ICA) ≤
∫ AT−1(T̃end)

AT−1(0)
ϕ(T) · Γ(SA(t), V A(t), W A(t)) · 1

ϕ(t) dt

=
∫ Tend

0
ϕ(t) · Γ(SA(t), V A(t), W A(t)) · 1

ϕ(t) dt

=
∫ Tend

0
Γ(SA(t), V A(t), W A(t)) dt

= Γ(RA).

This proves the first part of the lemma.
For the second part, note that the preconditions on resources in Def. 9 imply that

Γ(RH) > Γ(RA).

By the first part of this lemma and since RH = ICH in Def. 9, the second part follows.
Lemma 2. Γ is not robust if Γ(S, V , W) is not monotonically increasing.

Proof. Suppose Γ is not monotonically increasing, i.e., there exist (s, v, w) and (s′, v′, w′)
such that (s, v, w) < (s′, v′, w′) but Γ(s, v, w) > Γ(s′, v′, w′). In this case, the adversary
can simply put less resources in the adversarial chain than it actually has to get a chain
profile of higher weight.

Formally, for some time T > 0, consider the resource profiles

SH(t) = s, V H(t) = v, W H(t) = w for t ∈ [0, Tend]
SA(t) = s′, V A(t) = v′, W A(t) = w′ for t ∈ [0, Tend].

Clearly, the weight of adversarial resources is strictly less than honest resources at every
point of time. Now for adversarial chain (Def. 6) A chooses ϕ(t) = 1 for t ∈ [0, T]. Thus,
AT(t) = AT−1(t) = t and T̃end = Tend. Then A choose

S̃A(t̃) = s ≤ ϕ(T) · SA(T) = s′

Ṽ A(t̃) = v ≤ ϕ(T) · V A(T) = v′

W̃ A(t̃) = w ≤ ϕ(T) · W A(T) = w′

9∫ b

a
f(g(x))g′(x) dx =

∫ g(b)
g(a) f(u) du

10 d
dx f−1(a) =

(
f−1)′(a) = 1

f ′(f−1(a))

16

for all t̃ ∈ [0, T̃end], where T = AT−1(t̃).
Thus,

Γ(ICA) =
∫ T̃end

0
Γ(s, v, w)

=
∫ Tend

0
Γ(s, v, w) = Γ(ICH).

Therefore, Γ is not robust.

Lemma 3. Γ is not robust if Γ(S, V , W) is not homogeneous in V , W .

Proof. Due to Def. 9, if Γ is constant then it is not robust as the preconditions on the
resource profiles can not be met. In that case, we are done. From hereon we assume Γ is
not a constant function.

Due to Lem. 2 we can assume that Γ(S, V , W) is monotonically increasing in S, V , W .
Suppose Γ(S, V , W) is not homogeneous in V , W , i.e., there exists α > 0 and (s, v, w) ∈
Rk1+k2+k3

>0 such that Γ(s, αv, αw) ̸= α Γ(s, v, w). Now we have two case:

• Case 1: Γ(s, αv, α · w) > α Γ(s, v, w).

Case 2: Γ(s, α · v, α · w) < α Γ(s, v, w)
This implies Γ(s, 1

α
· v′, 1

α
w′) > 1

α
· Γ(s, v′, w′) where v′ = αv, w′ = α · w. Since

1
α

> 0, this case reduces to Case 1.

For Case 1, Γ(s, αv, αw) > α Γ(s, v, w) is equivalent to

Γ(s, αv, αw) = α Γ(s, v, w) + β (4)

for some β ∈ R>0. Note that α = 1 implies Γ(s, αv, α · w) = Γ(s, v, w) = α Γ(s, v, w) +
β = Γ(s, v, w) + β. Which in turn implies β = 0, a contradiction. Thus, α ̸= 1.

Case 1 can be further divided in sub-cases:

• Case 1a: α > 1 and Γ(s, αv, αw) ≤ Γ(s, v, w).

• Case 1b: α > 1 and Γ(s, αv, αw) > Γ(s, v, w)

• Case 1c: α < 1 and Γ(s, αv, αw) < Γ(s, v, w).

• Case 1d: α < 1 and Γ(s, αv, αw) ≥ Γ(s, v, w).

Let’s prove each case individually:

Case 1a: α > 1 and Γ(s, αv, αw) ≤ Γ(s, v, w). Since (s, v, w) < (s, αv, α, w) and
due to monotonicity of Γ (Lem. 2), we also have that Γ(s, αv, αw) ≥ Γ(s, v, w).
Thus, Γ(s, αv, αw) = Γ(s, v, w). Using Eq. (4), we get

Γ(s, αv, αw) = α Γ(s, v, w) + β = Γ(s, v, w).

This implies, (1 − α) Γ(s, v, w) = β. Since α > 1, the left-hand side is negative
while right-hand side is positive. Hence, this case is impossible.

17

Case 1b: α > 1 and Γ(s, αv, αw) > Γ(s, v, w). In this case “squeezing” time gives
more weight than the original resources profile. A will “squeeze” (v, w) by factor α
to reach (αv, αw) and use this to get a higher weight than the honest chain profile.
Formally, for Tend = T0 + T1 where T1 = 1 and T0 ≥ α−1

β
· Γ(s, αv, αw) consider

resource profiles RH and RA such that:

SH(t) = s, V H(t) = v, W H(t) = w for t ∈ [0, T0)
SH(t) = s, V H(t) = αv, W H(t) = αw for t ∈ [T0, Tend]
SA(t) = s, V A(t) = v, W A(t) = w for t ∈ [0, Tend]

Since Γ(SH(t), V H(t), W H(t)) ≥ Γ(SA(t), V A(t), W A(t)) for all t ∈ [0, Tend] and
Γ(SH(t), V H(t), W H(t)) > Γ(SA(t), V A(t), W A(t)) for all t ∈ [T0, Tend], precondi-
tions on resource profiles of Def. 9 are satisfied.
The weight of the honest chain profile is

Γ(ICH) = T0 · Γ(s, v, w) + T1 · Γ(s, αv, αw)
= T0 · Γ(s, v, w) + T1 · α · Γ(s, v, w) + T1 · β (by Eq. (4))

A chooses ϕ(t) = α for all t ∈ [0, Tend]. This gives AT(T) = T
α

, AT−1(t̃) = αt̃ and
T̃end = Tend

α
. Setting ϕ(t) = α is “squeezing” as α > 1. A chooses

S̃A(t̃) = SA(T) = s

Ṽ A(t̃) = ϕ(T) · V A(T) = αv

W̃ A(t̃) = ϕ(T) · W A(T) = αw

for all t̃ ∈ [0, T̃end], where T = AT−1(t̃) = αt̃.
Thus, the weight of the adversarial chain profile is

Γ(ICA) =
∫ T̃end

0
Γ(s, αv, αw) dt = T̃end · Γ(s, αv, αw)

= Tend

α
· Γ(s, αv, αw) = T0 + T1

α
· Γ(s, αv, αw)

= T0 + T1

α
· (α Γ(s, v, w) + β) by Eq. (4)

Since T0 ≥ α − 1
β

· Γ(s, αv, αw) and T1 = 1,

by simplifying, we get
≥ T0 Γ(s, v, w) + T1(α Γ(s, v, w) + β)
= Γ(ICH).

This implies Γ(ICA) ≥ Γ(ICH) and hence Γ is not robust.

Case 1b and 1c: These cases are similar in style to the previous two. We defer
them to App. B.1.

This completes the proof.

18

5 Discrete Blockchain Model
Blockchains do not reflect the ideal resources but consist of discrete blocks. Honest users
create blocks according to some prescribed rule, e.g., in fixed time intervals, but the
adversary may not adhere to this rule. A block reflects the total amount of resources that
were expended to create it.

Space and VDF speed are timed resources, e.g., hashes per second. For these, the
block reflects (at most) the total amount of effort that went into it. For example, 230

hashes were performed to create a block. In contrast, space does not account for time as
it’s usually measured in bits—it is time-invariant.

Thus, the block may only reflect the space available at some point during the block.
Like in the ideal model, we will describe which Γ leads to a secure discrete blockchain.

Compared to the ideal model, we need additional, yet realistic assumptions. First, the
security result is quantitative and depends on the fluctuation of resources within a block.
If the fluctuation is smooth, then the blockchain has good security in a quantitative sense.
Second, space must be sub-homogeneous to disincentivize replotting attacks as already
explained in § 1.9.

5.1 Definitions
The following definitions define a blockchain BC as the discretization of an ideal chain
profile IC. Keep in mind, however, that the ideal chain profile IC itself arises a resource
profile R as described in § 4. Looking ahead to Thm. 2, we will ultimately define the
security of BC with respect to R.

Let us first define a block. In short, it accurately reflects the timed resources V and
W used to create it. S is different; The space reflected by a block S(bi) needs to lie
between the minimum and maximum space available during the bi’s timespan.

Definition 10 (Blocks). Let IC = (S(t), V (t), W (t))[0,T] be a chain profile. A block bi

is defined by a timespan (ti, t′
i) with 0 ≤ ti < t′

i ≤ T . The resources reflected by the block
are denoted by S■(bi), V■(bi), and W■(bi).

Timed resources V■ and W■ are reflected by

V■(bi) =
∫ t′

i

ti

V (t) dt and W■(bi) =
∫ t′

i

ti

W (t) dt.

The constraint on S■ is that

min
ti≤t≤t′

i

S(t) ≤ S■(bi) ≤ max
ti≤t≤t′

i

S(t). (5)

In the sequel, we will often make use of minima and maxima of resources. For a block
bi with timespan (ti, t′

i) we denote the minimum and maximum space by

S■,min(bi) = min
ti≤t≤t′

i

S(t) and S■,max(bi) = max
ti≤t≤t′

i

S(t)

where min, max is applied element-wise over whole vector. This is analogously defined for
V■ and W■.

Now, a blockchain is a sequence of non-overlapping blocks. Its weight Γ■ is the sum of
the blocks’ weights.

19

b1 b2 b3 b4 b5 b6

(a) Honest parties.
b1 b2 b3 b4

(b) Adversary (Example).

Figure 5: Discretization of parties. Here, honest parties discretize in fixed time intervals,
while the adversary may construct blocks in any non-overlapping fashion.

Definition 11 (Discrete Blockchain). A discrete blockchain is a sequence of blocks
BC = (b0, . . . bB). The weight of a blockchain is

Γ■(BC) =
∑

bi∈BC
Γ(S■(bi), V■(bi), W■(bi)) (6)

Blocks are discrete chunks of an ideal chain profile. Recall that this chain profile arises
from a resource profile; for honest parties, they are identical. To discretize their chain
profile, honest parties follow some prescribed rules to create blocks. The resulting blocks
are non-overlapping and cover the whole timespan without gaps. A rule is, e.g., creating
blocks in fixed time intervals (cf. Fig. 5a).

Definition 12 (Honest Discretization). Consider the honest parties’ resource profile RH =
(SH(t), V H(t), W H(t))[0,T] and their ideal chain profile ICH := RH. The corresponding
honest blockchain is BCH = (bH

0 , . . . , bH
B) where the timespan of block bH

i is (ti, t′
i). It

holds that t0 = 0, t′
B = T , and t′

i = ti+1 for all i ∈ [B − 1].

The adversary also starts from a resource profile, but they may cheat when deriving
the ideal chain profile from the resources. Recall that the adversary may cheat by
squeezing/stretching time, or pretending to have fewer resources (as previously defined in
Def. 6). In terms of discretization, the adversary may not necessarily follow the prescribed
rule. It may create blocks covering varying timespans, or it might leave gaps between
blocks. The only condition is that blocks don’t overlap. An example is shown in Fig. 5b.

Definition 13 (Adversarial Discretization). Consider the adversary’s resource profile
ICA = (SA(t), V A(t), W A(t))[0,T] and any ideal chain profile ICA satisfying Def. 6 for
some ϕ. The corresponding adversarial blockchain is BCA = (bA

0 , . . . , bA
B) where the

timespan of block bA
i is (ti, t′

i). It holds that t0 ≥ 0, t′
B ≤ T , and t′

i ≤ ti+1 for all
i ∈ [B − 1].

Looking ahead, the security of the discrete blockchain depends on the maximum
fluctuation of resources. We quantify this fluctuation by the ε-Smoothness of resources.
Essentially, ε bounds the absolute change of resources within a block.

20

Definition 14 (ε-Smoothness). Let ε > 0. A blockchain BC satisfies ε-dynamic availability
if, for all blocks 0 ≤ i ≤ B, it holds that

S■,max(bi) ≤ (1 + ε)S■,min(bi)
V■,max(bi) ≤ (1 + ε)V■,min(bi)

W■,max(bi) ≤ (1 + ε)W■,min(bi).

In practice, ε depends on how quickly users can acquire hardware (e.g., hard disks or
mining ASICs). It follows that ε only takes meaningful values if blocks do not span too
much time.

One way to limit the time span is Bitcoin’s difficulty adjustment mechanism. The
block difficulty is an upper bound (and lower bound) on the work reflected by a block
which is re-calibrated every two weeks. Since there is no incentive to expend more work
as soon as this upper bound is reached, the time span is effectively limited.

Bitcoin’s difficulty adjustment can be generalized to the multi-resource setting by
simply imposing an upper bound on the total weight of a block. As in Bitcoin, this upper
bound needs continual re-adjustment since the total resources dedicated to the blockchain
increase over time. For simplicity, we will not describe this formally; we simply assume
ε-smoothness holds for some ε.

5.2 Security Statement and Proof
Intuitively, a discrete blockchain is secure if the following holds. If the adversary starts
out with fewer resources than the honest parties, then the weight of the adversarial
blockchain is lower than that of the honest one. In other words, if Γ(RA) < Γ(RH), then
Γ■(BCA) < Γ■(BCH).

Our actual result is a bit weaker because we require a gap between honest and
adversarial resources, namely, (1 + ε)4 · Γ(RA) < Γ(RH). So the gap (1 + ε)4 is smaller
the smoother resources are. To demonstrate where this gap comes from, let us sketch
the reason for a (1 + ε)2 part of the gap. Consider the space S(bi) of a block. Recall
that space is a time-invariant resource, so a block represents the space available at some
point within the block (and not the cumulative space over the block’s timespan). This is
why Def. 10 demands that S■,min(bi) ≤ S■(bi) ≤ S■,max(bi). Now, we must be pessimistic
and assume that honest parties only get SH

■,min(bi) while the adversary is lucky and gets
SA

■,max(bi). Since space is ε-smooth, each of these introduces a gap of (1 + ε) These are
multiplicative, so in total (1 + ε)2.

Theorem 2. Let Γ be a robust weight function (Def. 9) that is sub-homogeneous in S
(Def. 3). Consider any honest and adversarial resource profiles RH and RA. Let BCH

and BCA be blockchains arising from these resource profiles according to Defs. 12 and 13.
If BCH and BCA are ε-smooth (Def. 14) and

Γ(RH) > (1 + ε)4 · Γ(RA), (7)

then
Γ■(BCH) > Γ■(BCA).

21

Before we prove the theorem, we state a corollary that is easier to grasp intuitively.
Assume that S is not only sub-homogeneous, but also homogeneous.11 This covers natural
choices such as Chia’s S · V . Under this assumption, Thm. 2 may be viewed in the
following way.

Corollary 1. Under the assumptions of Thm. 2 with the additional constraint that Γ is
homogeneous in S, if

(1 + ε)2 · SA(t) < SH(t)
(1 + ε)2 · V A(t) < V H(t)

(1 + ε)2 · W A(t) < W H(t)

hold for all 0 ≤ t ≤ T , then
Γ■(BCH) > Γ■(BCA).

Essentially, Corollary 1 tells us that if the adversary has sufficiently less of every
resource than all honest parties combined, the blockchain is secure. The smaller ε is the
stronger the statement. In practice, ε behaves in a way that corresponds to an intuitive
understanding of blockchain security. First, ε decreases as the total amount of resources
committed to the blockchain increases. Second, the shorter the time span of blocks is,
the smaller ε. Both of these properties are satisfied by the most popular longest-chain
blockchains used in practice.

Proof of Thm. 2. First, since Γ is robust, it must be monotonic and homogeneous by
Thm. 1. Second, Eq. (7) implies that

Γ(ICH) > (1 + ε)4 · Γ(ICA)

because Γ(ICH) = Γ(RH) and Γ(RA) ≥ Γ(ICA) due to Lem. 1.
Using this, we will now prove that the sequence of inequalities

Γ■(BCH) ≥ 1
(1 + ε)2 Γ(ICH) > (1 + ε)2 · Γ(ICA) ≥ Γ■(BCA)

holds, which in turn implies the theorem. We will prove the left and right inequality
separately.

Case Γ■(BCH) ≥ 1
(1+ε)2 Γ(ICH): By definition of every block bi with timespan (ti, t′

i),
it follows that

Γ■(BCH) =
∑

bi∈BCH

Γ
(
SH

■
(bi), VH

■
(bi), WH

■
(bi)

)

=
∑

bi∈BCH

Γ
(

SH
■

(bi),
∫ t′

i

ti

V H(t) dt,
∫ t′

i

ti

W H(t) dt

)

≥
∑

bi∈BCH

Γ
(

S■

H
min(bi),

∫ t′
i

ti

V H(t) dt,
∫ t′

i

ti

W H(t) dt

)
.

11Note that every homogeneous function is sub-homogeneous, but not vice-versa.

22

The third line follows by the monotonicity of Γ and the fact that SH
■

(bi) ≥ SH
■,min(bi)

necessarily.
Let V■

H(bi) = 1
t′
i − ti

·
∫ t′

i

ti

V H(t) dt denote the average VDF speed within a block.

Clearly, V■ minH(bi) ≤ V■

H(bi) ≤ VH
■,max(bi). Define W■

H(bi) analogously. Using these
insights, we continue with

Γ(BCH) ≥
∑

bi∈BCH

Γ
(

SH
■,min(bi),

∫ t′
i

ti

V H(t) dt,
∫ t′

i

ti

W H(t) dt

)

=
∑

bi∈BCH

(t′
i − ti) · Γ

(
SH

■,min(bi), V■

H(bi), W■

H(bi)
)

≥
∑

bi∈BCH

(t′
i − ti) · Γ

(
SH

■,min(bi), VH
■,min(bi), WH

■,min(bi)
)

where the second line follows as Γ is homogeneous in V , W and the last line follows from
monotonicity.

Now we invoke Def. 14 to switch min to max, that is,

Γ■(BCH) ≥
∑

bi∈BCH

(t′
i − ti) · Γ(SH

■,min(bi), VH
■,min(bi), WH

■,min(bi))

≥ 1
(1 + ε)

∑
bi∈BCH

(t′
i − ti) · Γ(SH

■,max(bi), VH
■,min(bi), WH

■,min(bi))

= 1
(1 + ε)2

∑
bi∈BCH

(t′
i − ti) · Γ(SH

■,max(bi), VH
■,max(bi), WH

■,max(bi))

where the second line follows from Γ being sub-homogeneous in S and the third from the
homogeneity of Γ in (V , W).

This implies the desired inequality because

Γ■(BCH) ≥ 1
(1 + ε)2

∑
bi∈BCH

(t′
i − ti) · Γ(SH

■,max(bi), VH
■,max(bi), WH

■,max(bi))

≥ 1
(1 + ε)2

∑
bi∈BCH

∫ t′
i

ti

Γ(SH(t), V H(t), W H(t)) dt

= 1
(1 + ε)2

∫ T

0
Γ(SH(t), V H(t), W H(t)) dt

= 1
(1 + ε)2 Γ(ICH).

Note that the third line follows because the blocks of honest parties span the whole
timespan without gaps by definition.

Case Γ■(BCA) ≤ (1 + ε)2 Γ(ICA): The proof is symmetrical to the previous case.
Essentially, “≥” is swapped with “≤” and “min” with “max”. For completeness, this case
is stated in App. B.2.

Acknowledgements. This research was funded in whole or in part by the Austrian
Science Fund (FWF) 10.55776/F85.

23

References
[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable

delay functions. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part I, volume 10991 of LNCS, pages 757–788. Springer,
Heidelberg, August 2018.

[BDK+22] Vivek Kumar Bagaria, Amir Dembo, Sreeram Kannan, Sewoong Oh, David
Tse, Pramod Viswanath, Xuechao Wang, and Ofer Zeitouni. Proof-of-stake
longest chain protocols: Security vs predictability. In Jorge M. Soares, Dawn
Song, and Marko Vukolic, editors, Proceedings of the 2022 ACM Workshop on
Developments in Consensus, ConsensusDay 2022, Los Angeles, CA, USA, 7
November 2022, pages 29–42. ACM, 2022.

[DFKP15] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof
Pietrzak. Proofs of space. In Rosario Gennaro and Matthew J. B. Robshaw, ed-
itors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 585–605. Springer,
Heidelberg, August 2015.

[ES14] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is
vulnerable. In Nicolas Christin and Reihaneh Safavi-Naini, editors, FC 2014,
volume 8437 of LNCS, pages 436–454. Springer, Heidelberg, March 2014.

[FWK+22] Matthias Fitzi, Xuechao Wang, Sreeram Kannan, Aggelos Kiayias, Nikos
Leonardos, Pramod Viswanath, and Gerui Wang. Minotaur: Multi-resource
blockchain consensus. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine
Shi, editors, ACM CCS 2022, pages 1095–1108. ACM Press, November 2022.

[PKF+18] Sunoo Park, Albert Kwon, Georg Fuchsbauer, Peter Gazi, Joël Alwen, and
Krzysztof Pietrzak. SpaceMint: A cryptocurrency based on proofs of space. In
Sarah Meiklejohn and Kazue Sako, editors, FC 2018, volume 10957 of LNCS,
pages 480–499. Springer, Heidelberg, February / March 2018.

[TSZ23] Apostolos Tzinas, Srivatsan Sridhar, and Dionysis Zindros. On-chain times-
tamps are accurate. IACR Cryptol. ePrint Arch., page 1648, 2023.

[TTG+23] Ertem Nusret Tas, David Tse, Fangyu Gai, Sreeram Kannan, Mohammad Ali
Maddah-Ali, and Fisher Yu. Bitcoin-enhanced proof-of-stake security: Possi-
bilities and impossibilities. In 2023 IEEE Symposium on Security and Privacy,
pages 126–145. IEEE Computer Society Press, May 2023.

24

A Remarks on Ideal Model
An alternate to precondition on resource profiles in Def. 9 is to have honest resources
be strictly larger than adversarial every time instead of just for an interval. In that
case, our main result Thm. 1 would be true in one direction (monotonically increasing
and homogeneous implies robust) but in the other direction, it would not follow because
not every non-homogeneous function can be attacked (e.g. a function S · max(V, W),
when each resource is below some threshold c and is constant c2 after that). If we
additionally put a natural constraint that weight function Γ is not eventually constant (i.e.
for any point (S, V , W) there exists (S′, V ′, W ′) such that (S, V , W) < (S′, V ′, W ′)
and Γ(S, V , W) < Γ(S′, V ′, W ′)), then it would hold true that Γ is robust if and only if
it is monotonically increasing and homogeneous in V , W . We do not formally prove this
in this paper but it is an adaptation of our proof. Either way, the main takeaway is that
monotonically increasing and homogeneous are the robust functions and they are the only
ones that should be used to construct Nakamoto-style longest chain blockchains using
multiple resources.

B Missing Parts of Proofs

B.1 Proof of Lemma 3
Case 1c: α < 1 and Γ(s, αv, αw) < Γ(s, v, w). This case is the reverse of the
previous case. Here “stretching” leads to a higher weight than the original resource
profile. A “stretches” (v, w) by a factor α into (αv, αw) in order to get a higher
weighted chain profile than the honest chain profile.
Formally, let Tend = T0 +T1 where T1 = 1 and T0 ≥ α

β
((1−α) Γ(s, v, w)−β), T0 > 0

and consider the resource profiles RH and RA:

SH(t) = s, V H(t) = v, W H(t) = w for t ∈ [0, Tend]
SA(t) = s, V A(t) = v, W A(t) = w for t ∈ [0, T0)
SA(t) = s, V A(t) = αv, W A(t) = αw for t ∈ [T0, Tend]

Since Γ(SH(t), V H(t), W H(t)) ≥ Γ(SA(t), V A(t), W A(t)) for all t ∈ [0, Tend] and
Γ(SH(t), V H(t), W H(t)) > Γ(SA(t), V A(t), W A(t)) for all t ∈ [T0, Tend], the pre-
conditions on resource profiles in Def. 9 are met.
The weight of the honest chain profile is

Γ(ICH) = Tend · Γ(s, v, w) = (T0 + T1) · Γ(s, v, w).

A sets ϕ(t) = α for all t ∈ [0, T0) and ϕ(t) = 1 for all t ∈ [T0, T1], which gives

AT(T) =


T
α

for all t ∈ [0, T0)
T0
α

+ (T − T0) for all t ∈ [T0, T1]

25

AT−1(t̃) =
αt̃ for all t̃ ∈ [0, T0

α
)

T0 + (t̃ − T0
α

) for all t̃ ∈ [T0
α

, T̃end]

and T̃end = T0
α

+ T1. Setting ϕ(t) = α is “stretching” as α < 1.

Now A chooses

S̃A(t̃) = SA(T)
Ṽ A(t̃) = ϕ(T) · V A(T)

W̃ A(t̃) = ϕ(T) · W A(T)

for all t̃ ∈ [0, T̃end], where T = AT−1(t̃) = αt̃.

Thus, the weight of the adversarial chain profile is

Γ(ICA) =
∫ AT(T0)

0
Γ(S̃A(t), Ṽ A(t), W̃ A(t)) dt

+
∫ T̃end

AT(T0)
Γ(S̃A(t), Ṽ A(t), W̃ A(t)) dt

=
∫ T0

α

0
Γ(s, αv, αw) dt

+
∫ T0

α
+T1

T0
α

Γ(s, αv, αw) dt

= T0

α
· Γ(s, αv, αw) + T1 · Γ(s, αv, αw)

=
(

T0

α
+ T1

)
(α Γ(s, v, w) + β) by Eq. (4)

Since T0 ≥ α

β
((1 − α) Γ(s, v, w) − β) and T1 = 1,

by simplifying, we get
≥ (T0 + T1) · Γ(s, v, w)
= Γ(ICH).

This implies Γ(ICA) ≥ Γ(ICH) and thus Γ is not robust.

Case 1d: α < 1 and Γ(s, αv, αw) ≥ Γ(s, v, w). Since (s, αv, αw) < (s, v, w), by
monotonicity Lem. 2 we have that Γ(s, αv, αw) ≤ Γ(s, v, w). Thus, Γ(s, αv, αw) =
Γ(s, v, w). Intuitively, this says that stretching by factor 1

α
doesn’t change the

weight but since it increases the time as well it will give higher weight to the resulting
chain profile.

26

To show this formally we need to find two points in resource space such that weight
varies among the two points. Since Γ is not constant, there exists (s′, v′, w′) ∈ R3

>0
such that Γ(s′, v′, w′) ̸= Γ(s, v, w) = Γ(s, αv, αw).
Let δ := | Γ(s′, v′, w′) − Γ(s, v, w)|.

We have two cases:

Case A: Γ(s′, v′, w′) > Γ(s, v, w)
Case B: Γ(s′, v′, w′) < Γ(s, v, w).

We describe the violation of Def. 9 in both cases together while highlighting the
differences in the steps as we go: Let Tend = T0 + T1 where T1 = 1 and T0 ≥

δ
Γ(s,v,w)·(1

α
−1) .

Consider the resource profiles RH = (SH(t), V H(t), W H(t)) and RA = (SA(t), V A(t), W A(t))
such that:

SH(t) = s, V H(t) = v, W H(t) = w for t ∈ [0, T0)
SA(t) = s, V A(t) = v, W A(t) = w for t ∈ [0, T0]

Case A: :
SH(t) = s′, V H(t) = v′, W H(t) = w′ for t ∈ [T0, Tend]
SA(t) = s, V A(t) = v, W A(t) = w for t ∈ [T0, Tend]

Case B: :
SH(t) = s, V H(t) = v, W H(t) = w for t ∈ [T0, Tend]
SA(t) = s′, V A(t) = v′, W A(t) = w′ for t ∈ [T0, Tend]

Note that in both cases we have an interval where A’s resources has strictly lower
weight than the H’s resources. Thus, it satisfies the precondition on resource profiles
in Def. 9.
The weight of the honest chain profile is:

Γ(ICH) =
T0 · Γ(s, v, w) + T1 · Γ(s′, v′, w′) for Case A

T0 · Γ(s, v, w) + T1 · Γ(s, v, w) for Case B

which, by definition of δ, is same as:

Γ(ICH) =
T0 · Γ(s, v, w) + Γ(s, v, w) + δ for Case A

T0 · Γ(s, v, w) + Γ(s′, v′, w′) + δ for Case B

A chooses ϕ(t) = α for all t ∈ [0, T0) and ϕ(t) = 1 for all t ∈ [T0, T1]. This intuitively
gives us a stretch by factor 1

α
(as α < 1) for [0, T0] and the remaining time remains

the same.
We get

AT(T) =


T
α

for all t ∈ [0, T0)
T0
α

+ (T − T0) for all t ∈ [T0, T1]

27

AT−1(t̃) =
αt̃ for all t̃ ∈ [0, T0

α
)

T0 + (t̃ − T0
α

) for all t̃ ∈ [T0
α

, T̃end]

and T̃end = T0
α

+ T1.
A chooses

S̃A(t̃) = SA(T) = s

Ṽ A(t̃) = ϕ(T) · V A(T) = αv

W̃ A(t̃) = ϕ(T) · W A(T) = αw

for all t̃ ∈ [0, AT(T0)] and

S̃A(t̃) = ϕ(T) · SA(T)
Ṽ A(t̃) = ϕ(T) · V A(T)

W̃ A(t̃) = ϕ(T) · W A(T)

for all t̃ ∈ [AT(T0), T̃end] where T = AT−1(t̃) = αt̃.

Thus, the weight of adversarial chain profile is

Γ(ICA) =
∫ T̃end

0
Γ(S̃A(t), Ṽ A(t), W̃ A(t)) dt

=
∫ AT(T0)

0
Γ(s, αv, αw) dt

+
∫ T̃end

AT(T0)
Γ(S̃A(t), Ṽ A(t), W̃ A(t)) dt

For Case A:,

Γ(ICA) =
∫ T0

α

0
Γ(s, v, w) dt +

∫ T0
α

+T1

T0
α

Γ(s, v, w) dt

= T0

α
· Γ(s, v, w) + T1 · Γ(s, v, w)

Since T0 ≥ δ

Γ(s, v, w) · (1
α

− 1) and T1 = 1,

plugging in and simplifying, we get
≥ Γ(ICH)

28

For Case B:,

Γ(ICA) =
∫ T0

α

0
Γ(s, v, w) dt +

∫ T0
α

+T1

T0
α

Γ(s′, v′, w′) dt

= T0

α
· Γ(s, v, w) + T1 · Γ(s′, v′, w′)

Since T0 ≥ δ

Γ(s, v, w) · (1
α

− 1) and T1 = 1,

plugging in and simplifying, we get
≥ Γ(ICH)

Thus, in either case we get Γ(ICA) ≥ Γ(ICH), and hence Γ is not robust.

B.2 Proof of Theorem 2
Case Γ■(BCA) ≤ (1 + ε)2 Γ(ICA): By definition of every block bi with timespan (ti, t′

i), it
follows that

Γ■(BCA) =
∑

bi∈BCA

Γ
(
SA

■
(bi), VA

■
(bi), WA

■
(bi)

)

≤
∑

bi∈BCA

Γ
(

SA
■

(bi),
∫ t′

i

ti

V A(t) dt,
∫ t′

i

ti

W A(t) dt

)

≤
∑

bi∈BCA

Γ
(

SA
■,max(bi),

∫ t′
i

ti

V A(t) dt,
∫ t′

i

ti

W A(t) dt

)
.

The third line follows by the monotonicity of Γ and the fact that SA
■

(bi) ≤ SA
■,max(bi)

necessarily.
Using the previous insights about the average resources, we continue with

Γ■(BCA) ≤
∑

bi∈BCA

Γ
(

SA
■,max(bi),

∫ t′
i

ti

V A(t) dt,
∫ t′

i

ti

W A(t) dt

)

=
∑

bi∈BCA

(t′
i − ti) · Γ

(
SA

■,max(bi), V■

A(bi), W■

A(bi)
)

≤
∑

bi∈BCA

(t′
i − ti) · Γ

(
SA

■,max(bi), VA
■,max(bi), WA

■,max(bi)
)

where the last line follows from monotonicity.
Now we invoke Def. 14 to switch max to min, that is,

Γ■(BCA) ≤
∑

bi∈BCA

(t′
i − ti) · Γ

(
SA

■,max(bi), VA
■,max(bi), WA

■,max(bi)
)

≤ (1 + ε)
∑

bi∈BCA

(t′
i − ti) · Γ

(
SA

■,min(bi), VA
■,max(bi), WA

■,max(bi)
)

= (1 + ε)2 ∑
bi∈BCA

(t′
i − ti) · Γ

(
SA

■,min(bi), VA
■,min(bi), WA

■,min(bi)
)

29

where the second line follows from the sub-homogeneity of Γ in S and the third from the
homogeneity of Γ in (V , W).

This implies the desired inequality because

Γ■(BCA) ≤ (1 + ε)2 ∑
bi∈BCA

(t′
i − ti) · Γ(SA

■,min(bi), VA
■,min(bi), WA

■,min(bi))

≤ (1 + ε)2 ∑
bi∈BCA

∫ t′
i

ti

Γ(SA(t), V A(t), W A(t)) dt

≤ (1 + ε)2
∫ T

0
Γ(SA(t), V A(t), W A(t)) dt

= (1 + ε)2 Γ(ICA).

Note that the third line follows because the adversary may leave some gaps in time
between blocks.

30

	Introduction
	Bitcoin
	Beyond PoW
	Modelling Resources
	Idealized Longest-Chain Blockchains
	Weight Function
	Persistence for Idealized Chains
	Secure Blockchain from Robust Weight Functions
	Discrete Blocks
	Security in the Discrete Model

	New Longest-Chain Blockchains?
	Decentralized PoW
	Speed is all you Need?

	Preliminaries
	Ideal Chain Model
	Discrete Blockchain Model
	Definitions
	Security Statement and Proof

	Remarks on Ideal Model
	Missing Parts of Proofs
	Proof of Lemma 3
	Proof of Theorem 2

