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Abstract

Distributed Hash Tables (DHTs) are peer-to-peer protocols that act as com-
ponents for more advanced applications. Recent examples, driven by blockchains,
include decentralized storage networks (e.g., IPFS, Autonomi, Hypercore, and
Swarm), data availability sampling, or Ethereum’s peer discovery protocol.

In the blockchain setting, DHTs are susceptible to Sybil attacks, where an
adversary disrupts the network by adding numerous malicious nodes. Preventing
such attacks requires limiting the adversary’s ability to create a large number of Sybil
nodes. Surprisingly, the aforementioned applications implement no such measures.
Seemingly, existing techniques are unsuitable for these applications.

For example, a straightforward technique described in the literature uses proof of
work (PoW), where nodes periodically challenge their peers to solve computational
puzzles. This approach, however, performs poorly in practice. Since these appli-
cations do not require honest nodes to have substantial computational power, the
challenges cannot be too difficult. As a result, even moderately capable hardware
can sustain many Sybil nodes.

In this work, we explore using Proof of Space (PoSp) to limit the number
of Sybils in DHTs. While PoW proves that a node wastes computation, PoSp
proves that a node wastes disk space. This aligns better with the resource needs
of these applications: Many of them are storage-focused and rely on honest nodes
contributing significant disk space to ensure functionality.

With this in mind, we propose a mechanism to limit Sybils where honest nodes
dedicate a constant fraction of their disk space to PoSp. This ensures that an
adversary cannot control a constant fraction of DHT nodes unless it contribute
a constant fraction of the whole disk space contributed to the application overall.
Since this is typically a considerable amount, Sybil attacks become economically
unfeasible.

1 Introduction
Distributed hash tables (DHTs) offer an efficient key lookup functionality in a network of
nodes. Each node is responsible for some part of the key space. Given a key, a lookup
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query returns the node responsible for it. Amongst other things, this functionality suffices
to implement the eponymous hash table.

To facilitate lookups, each node is connected to other nodes called peers. These
connections are not arbitrary, but follow a protocol-specified network structure. Nodes
have an identifier (often a random one) that dictates their place in the network. To be
efficient, DHTs require a well-designed structure. In a network of n nodes, modern DHT
constructions achieve lookups in O(log n) hops while only keeping track of O(log n) peers
(e.g., [SMK+01, MM02]).

Initially, DHTs were used in peer-to-peer file-sharing systems, e.g., to enable trackerless
torrents in BitTorrent [LN08]. Recently, blockchains opened new applications for DHTs.
Storage networks such as IPFS [Ben14] (with incentives possible using Filecoin [Pro17]),
Autonomi [aut], Hypercore [hyp], and Swarm [Tró24] use a DHT for content discovery.
Ethereum employs a DHT for peer discovery in form of its discv4 protocol [disa] and its
designated successor discv5 [disb]. In addition, DHTs are currently being researched in
the context of data availability sampling [CGKR+24].

All of these applications use Kademlia [MM02] (or variations thereof). It is practically
efficient and comes with redundancy features. So, to some degree, it is resilient against,
e.g., nodes crashing or basic denial-of-service attack. However, thwarting more elaborate
adversarial attacks is not one of its design goals.

1.1 Adversarial Attacks
In the blockchain context, DHTs are generally used without any central authority. So
they need to withstand Sybil attacks [Dou02]. In such an attack, the adversary acts as
multiple nodes with different identifiers. There are two aspects to Sybil attacks in DHTs:

1. The number of Sybil nodes (in short, Sybils) in the network. A Sybil attack injecting
sufficiently many nodes may block lookups or return incorrect results, effectively
rendering the DHT useless.

2. The location of Sybils in the network. If the adversary can freely choose identifiers,
Sybil attacks become more powerful. Since DHTs are structured, the identifier of a
node determine its position in the network. Thus, by strategically placing Sybils,
the adversary can, e.g., eclipse (i.e., cut off) a specific honest node from other honest
nodes.

The impact of an attack depends on the DHT construction. For example, Kadem-
lia’s [MM02] redundancy makes it somewhat resistant against Sybil attacks, but it does
not provide any concrete guarantees. Nevertheless, it is reasonable to assume that an
attack is unlikely to succeed if there are only few Sybils (Aspect 1) whose identifiers are
uniformly distributed (Aspect 2).

There do exist prior works that propose Sybil-resistance mechanisms with provable
guarantees. For example, randomly grouping nodes into committees where each committee
acts as a singular DHT node (e.g., [AS06, JPS+18]). This is secure as long as there are
not too many Sybils in the network (Aspect 1).
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1.2 Proof of Work is not an Ideal Countermeasure
The literature proposes many defenses against Sybil attacks (we review them in § 2). The
most promising approach is proof of work (PoW) because it is simple to implement, does
not require any special infrastructure, and, in theory, defends against both aspects of
Sybil attacks:

To limit the amount of Sybils (Aspect 1), nodes periodically challenge peers to solve
computational puzzles. This bounds the number of adversarial nodes as a function of the
adversary’s computational resources [LMCB12, TF10, JPS+18].

To prevent the adversary from choosing identifiers (Aspect 2), an identifier is only
valid if it comes with a solved PoW challenge.1 This makes identifier generation more
expensive and therefore harder for the adversary to strategically choose identifiers to, e.g.,
perform an eclipse attack [BM07, JPS+18].

In practice, we argue that PoW does not defend against Aspect 1, but still offers
reasonable protection against Aspect 2. The reason is that there is a resource mismatch.
PoW challenges require computation, while most of the above application require disk
space (e.g., storage networks or data availability sampling).

Consider using PoW to limit the number of Sybils (Aspect 1). In the storage applica-
tions above, nodes use general-purpose hardware equipped with a significant amount of
disk storage, but only average computational power. As a consequence, PoW challenges
cannot be too difficult, as honest nodes could not pass them otherwise. Thus, an adversary
focussing their resources only on computation may sustain a lot of Sybil nodes. So PoW
does not meaningfully limit the number of Sybils. Apart from that, even if PoW challenges
were reasonably difficult, then honest nodes would need to continually waste a lot of
energy (and thereby money).

Nevertheless, using PoW to harden identifier generation (Aspect 2) works reasonably
well. Since honest nodes only generate an identifier once, the PoW difficulty may be set
to a relatively high level. So it may take a while for honest nodes to join the DHT, but
makes it considerably harder for adversarial nodes to pick suitable identifiers.

1.3 Our Contribution: Proof of Space to Limit Sybils
In light of the above, we investigate using proofs of space (PoSp) [DFKP15] instead of
PoW challenges to limit the number of Sybils (Aspect 1) in DHTs. On a high level,
PoSp is the disk space analogue to PoW; it proves that a node is wasting a lot of disk
space. Crucially, after a moderately expensive initialization phase, proofs are efficient
to compute and verify, i.e., polylogarithmic in the size of the wasted space. Two PoSp
constructions [Fis19, AAC+17] are already used in practice by Filecoin [Pro17] and
Chia [chi].

Resource Synergy. As mentioned above, the services provided by the above applications
mostly revolve around storing data. So participating nodes usually have a lot of disk

1For example, the identifier id must be accompanied by an x such that h(id, x) < D where h is a
cryptographic hash function and D is the PoW difficulty parameter.
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space at their disposal.2 Thus, in contrast to PoW, the resource used to limit Sybils is
the same resource that the application requires. In addition, the periodic PoSp challenges
are computationally efficient, so nodes do not need to continually waste energy.

Our Constructions and their Guarantees. The Basic protocol we propose is simple
and modular. It is compatible with existing DHT constructions, e.g., Kademlia [MM02].
In principle, it could be used in other peer-to-peer protocols, but we focus on the DHT
use-case due to the synergy with applications. In a nutshell, Basic prescribes that every
node provably wastes a fixed amount of disk space perpetually. Other nodes verify this by
sending PoSp challenges to their peers periodically. The fixed amount of disk space is
a global system parameter, e.g., 128 GiB. This bounds the number of Sybil nodes by a
function of the adversary’s total available disk space.

Our extension of Basic protocol, dubbed Virt, bounds the fraction of Sybils in the
network as a function of adversarial and honest disk space. The idea is that every physical
node acts as one or more virtual nodes [DKK+01] running Basic. Every physical node
wastes, say, 1/10th of its disk space by running as many basic protocol instances as fit
inside this space. The remaining 9/10ths are dedicated to the actual application, e.g.,
storing files in IPFS [Ben14].

Main Result (Cor. 1 of Thm. 2). In the protocol using virtual nodes, for any constant
0 ≤ α < 1, the fraction of adversarial nodes nadv of all nodes n is bounded by

nadv/n < α if Sadv < c · Shon

where Sadv/Shon denote the adversarial/honest disk space, and 0 < c ≤ α/(1 − α) is a
constant depending on α as well as system parameters.

Both approaches limit the number of Sybil nodes (Aspect 1). However, they cannot
be used to limit identifier generation (Aspect 2) for subtle reasons, which we discuss in
§ 4.1. As argued above, PoW is a reasonable defense against Aspect 2 in practice.

Applications. The focus of this paper is to investigate PoSp as a mechanism to limit
Sybils from a theoretical and also practical perspective. Our protocols are modular
and may be used with existing DHTs. Below we propose two exemplary instantiations.
For both, we recommend using Virt together with Filecoin’s [Pro17] PoSp [Fis19] (it is
practically efficient and has good concrete parameters, cf. § 6).

The first instantiation uses s/Kademlia [BM07], a more robust version of Kadem-
lia [MM02] implementing PoW puzzles for identifiers and more robust lookup routing.
While this does not give any provable Sybil-resistance guarantees, we assume that it should
be reasonably robust in practice (and leave simulations as future work). The second uses
Kademlia [MM02] together with committee-based approach of Jaiyeola et al. [JPS+18]
discussed above. This gives provable guarantees, but we assume that the overhead of the
committees may lead to performance problems in practice.

2Depending on the application, storage nodes could be different from the nodes participating in the
DHT. In practice, however, this is usually not the case (e.g., in IPFS [Ben14] by default). Thus, we
assume that DHT nodes have meaningful amounts of disk space available.
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2 Related Work

2.1 Sybil Resistance Techniques
The literature on Sybil resistance in DHTs and distributed systems is diverse and multiple
surveys exist [MK13, SM02, LSM06, UPS11]. We give an overview of some approaches.

We already described PoW defenses in § 1. Many works [LMCB12, TF10, JPS+18]
require peers to periodically solve PoW puzzles. This gives a bound on the number of
Sybils as a function of the adversarial computational power. Others [BM07, JPS+18]
enforce that an identifier is only valid if it is accompanied by a PoW solution. This
complicates attacks because the adversary cannot freely choose specific identifiers but
must bruteforce them.

A downside of PoW approaches is that honest nodes also need to spend a lot of
energy to solve puzzles—even if there is no adversarial activity. A line of work [GSY18,
GSY19b, GSY19a, GSY20, GSY21] optimizes resource burning3 to minimize the resource
expenditure of honest parties. It is an open problem to design a DHT using these
techniques [GSY20, GSY21].

Redundancy is a popular approach to increase robustness against benign faults and
also Sybil resistance. These approaches usually assume that the fraction of Sybil nodes in
the network is bounded (relying on, e.g., PoW [JPS+18]). Multiple works [AS04, FSY05,
AS06, SY08, YKGK13, JPS+18] ensure redundancy using groups. The core idea is that
nodes do not directly participate in the protocol, but instead are randomly grouped
together. Each group collaboratively acts as a single node using Byzantine agreement
protocols. Another avenue is redundant routing using disjoint paths [KT08, BM07].

Many approaches use information about social relationships [DLLKA05, LLK10,
YKGF06, YGKX10]. These relationships are usually modeled as a graph where an
edge between nodes exists if there is a trust relationship between the node operators
in reality. The systems are Sybil-resistant as long as gaining trust in real life (e.g., by
social engineering) is hard. These techniques only work in certain scenarios (e.g., instant
messengers [LLK10]) and do not seem applicable to blockchain applications.

Other approaches use statistical tests to spot attacks [SAK+24], or inhibit identifier
generation in ad-hoc ways. For example, setting the identifier of a node to the hash of
its IP address [DKK+01], or avoiding peers with a low round-trip-time between each
other [ZBV24].

Specific to Ethereum, one proposed solution to limit the amount of Sybils is using
a proof of validator [KMNC23] scheme. On a high level, it ensures that only Ethereum
validators, who are assumed to be honest, can join the DHT. The barrier to becoming a
validator is high, i.e., staking at least 32 ETH4. So honest nodes that do not have that
much money cannot join the DHT.

3Here, the resource is unspecified on purpose. It could be computation, money, solving CAPTCHAs,
etc. They mention disk space but do not characterize it further. In our view, space is not a resource that
is burned, but continually allocated instead.

4≈125, 000 USD, converted on 2024-12-15.
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2.2 Attacks
Wang and Kangasharju [WK12] describe attacks against BitTorrent Mainline DHT and
also give evidence that attacks were happening in 2010. There are two recent Sybil attacks
on IPFS. The first is an eclipse attack by Prünster et al. [PMZ22]. They pre-generate
and store ≈1.46 · 1011 identifiers to strategically target any node. Then, they exploit
how IPFS implemented the eviction policy of Kademlia [MM02] peers to eclipse nodes.
The peer management has since been improved to make the attack more expensive. The
second is a content-censorship attack [SAK+24]. It strategically places Sybil nodes around
the hash of the content to be censored. Their proposed countermeasure uses statistical
tests [SAK+24].

3 Preliminaries
For notation, let λ be the security parameter. [n] denotes the set {1, 2, . . . , n} and x←$ X
sampling uniformly at random from X . log is the logarithm base 2. We use standard
Big-O notation and well-known shorthands such as poly, polylog, etc. As usual, a tilde,
e.g., Θ̃(·), hides polylogarithmic factors.

3.1 Distributed Hash Tables
Consider a network of n nodes where each node has an identifier id ∈ I. Further, consider
a key space K that usually coincides with the identifier space (e.g., I = K = {0, 1}160). In
a distributed hash table (DHT), each node is responsible for some part of the key space.
The protocol lookup : K → I takes a key key ∈ K as input and outputs the identifier of
the node responsible for key.

To make lookup possible, every node is connected to multiple other nodes called
peers. A node choose its peers in a structured manner depending on the identifiers. A
well-designed structure enables efficient lookups. Important metrics include the number
of peers and the number of hops between nodes per lookup query.

Chord [SMK+01] is a simple, yet efficient construction. Each node has O(log n) peers
and lookup needs at most O(log n) hops. Kademlia [MM02] enjoys the same asymptotic
efficiency, but is more robust and the most popular DHT in practice. For interested
readers, we give a high-level overview of Kademlia’s design in App. A. We remark that
constructions with better asymptotic efficiency exist [KK03, GV04], but they are not
widely used to the best of our knowledge.

Our constructions use the DHT in a black-box manner. We abstract the DHT by the
following functions below. Our definition only makes mild assumptions on how nodes
manage their peers.

Definition 1 (Distributed Hash Table). A DHT stores peers as a tuple (id, aux) where id
is the peer’s identifier and aux is auxiliary data (e.g., a public key or an IP address). It
offers at least the following functions:

• join()→ (id, aux): Joins the network and returns the own id and auxiliary data aux.

• addPeer(id, aux): Adds the node id as a peer.
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• pingPeer(id, aux) → b: Checks whether the peer id is online and returns a bit
b ∈ {true, false}. This function is executed periodically by the DHT to ensure that
all peers are still online.

• lookup(key)→ (id, aux): On input of a key key, returns the node responsible for key.

3.2 Proofs of Space
Proofs of space (PoSp)5 were introduced by Dziembowski et al. [DFKP15]. Informally
speaking, they are the disk space analogue to a PoW. A PoSp is a proof system that
allows a prover to efficiently (in terms of computation and bandwidth) convince a verifier
that they are wasting disk space.

Multiple follow-up proposals for PoSp protocols exist. Like the initial paper of
Dziembowski et al. [DFKP15], many of them are based on graph labeling. This includes
proofs of catalytic space [Pie19], which allow storing useful data (e.g., backups) instead
of wasting space, and the stacked expander graphs construction [RD16]. The latter
inspired the stacked depth-robust graphs construction [Fis19] which serves as the basis
for Filecoin’s [Pro17] PoSp. Using the more general notion of predecessor-robustness,
Reyzin [Rey23] proves tighter bounds, paying special attention to constants. An entirely
different approach rooted in function inversion is taken by Abusalah et al. [AAC+17] on
which Chia [chi] is based.

In all of the above protocols, the prover and verifier share a short, common input seed,
e.g., a public key. They use seed in the following two protocols:

In the initialization protocol, on input seed, the prover generates an output file file
of large size N (say, 128 GiB) and stores it locally on disk. In some constructions
(e.g., [Fis19, Rey23]), the prover additionally computes a commitment com to file and
data produced in course of its derivation from seed. It sends the commitment com to
the verifier who then checks that com is mostly correct—what “mostly correct” precisely
means depends on the protocol. We assume that this check is non-interactive.6

In the online protocol, the verifier challenges the prover to demonstrate that they are
still storing file in its entirety. They do so by sending a uniformly random challenge7 chal
to the prover. The prover responds with a proof πchal which the verifier verifies with the
help of com and seed. By periodically executing the online protocol, the verifier ensures
that the prover is storing file for some span of time.

One essential requirement is efficiency, otherwise constructing PoSp is trivial.8 While
generating file takes O(N) at best, all other computations, especially the ones of the
verifier, must be fast, i.e., polylog(N) time. Similarly, com, πchal, etc. must be of size
polylog(N) at most.

The most important PoSp property is Space-Hardness which we state as in [Rey23].
Intuitively, it ensures the following: A cheating prover P̃ storing at most (1− εspace) ·N

5In this paper, we always refer to proofs of persistent space [DFKP15] as opposed to proofs of transient
space [ABFG14].

6Note that interactive prior works [DFKP15, RD16, Fis19, Pie19, Rey23] are all public coin, so
applying the Fiat-Shamir transform is possible.

7We leave the set of all possible challenges implicit.
8For example, define file = h(seed) where h is a hash function with N -bit outputs with the proof

πchal = file of size of N bits. This is inefficient as N is large.
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bits and taking less than (1 − εtime) · time(Init) to answer a challenge will be detected
with probability prdet. We say a proof of space has a space gap εspace, time gap εtime, and
single-query detection probability prdet.

Another important property in our setting is Nonreusability. On a high level, this means
the space of one PoSp with seed1 cannot be reused for another one with different seed2.
Thus, storing both needs at least (1−εspace) ·2N space. Intuitively, for constructions based
on hash functions with a proof in the random oracle model (e.g., [Fis19]), Nonreusability
holds because seed is used for domain separation. So each PoSp depends on an independent
random oracle.

Definition 2 (Proof of Space). A (non-interactive) proof of space is defined via four
algorithms:

• Init(seed)→ (file, com, πcom)9

• VerifyInit(seed, com, πcom)→ b with b ∈ {true, false}

• Prove(seed, file, com, chal)→ πchal

• Verify(seed, com, chal, πchal)→ b with b ∈ {true, false}

It fulfills the following properties:

Completeness Honest provers storing file always pass verification. That is, true ←
VerifyInit(seed, com, πcom) for all (file, com, πcom)← Init(seed), and true← Verify(seed, com, chal, πchal)
for πchal ← Prove(seed, file, com, chal).

Efficiency Suppose |file| = N . Init runs in time time(Init) ∈ Θ̃(N) and all other algorithms
in time poly(λ, log N). Apart from file, all other outputs are of size poly(λ, log N).

Soundness In the following, the PPT algorithm P̃ is a cheating prover and the protocol
defines when a commitment com is “mostly correct”.

Soundness of Initialization If P̃ outputs a commitment c̃om that is not mostly
correct, VerifyInit(x, c̃om, π̃com)→ false except with negl(λ) probability.

Space-Hardness Suppose that c̃om is mostly correct. Then, with probability
at least prdet over chal, if P̃ uses at most (1 − εspace) · N space, it needs
time of at least (1 − εtime) · time(Init) to compute a proof π̃chal such that
Verify(x, c̃om, chal, π̃chal)→ true.

Nonreusability Consider k PoSp with distinct seeds seed1, . . . , seedk and mostly correct
commitments c̃om1, . . . c̃om2 and supppose P̃ stores at most (1− εspace) · k ·N bits.
Then, except for negl(λ) probability, there exists a PoSp i where, with probability
prdet over chal, P̃ needs at least (1− εtime) · time(Init) to compute a proof π̃chal such
that Verify(x, c̃omi, chal, π̃chal)→ true.

9For readers familiar with PoSp: In [AAC+17] com and πcom is empty.
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4 Constructions to Limit Sybils

4.1 Basic Construction
The Basic DHT construction requires every node to continually store a PoSp file of a fixed
size, e.g., |file| = N = 128 GiB. To prevent cheating, every node periodically challenges
its peers to prove that they are still storing file. Intuitively, this ensures that the number
of Sybil nodes is bounded by

f < Sadv/((1− εspace) ·N) (1)

where Sadv is the adversary’s space and εspace is the space gap of the PoSp. We will later
formalize this in Thm. 1.

Basic uses a PoSp protocol, denoted by PoSp, and builds upon some existing DHT
construction, denoted by DHT. Since nodes in DHT perform regular pings anyway (e.g.,
to check whether peers are still online), DHT is easily adapted. Basic is mostly identical
to DHT modifying only join, addPeer, and pingPeer (as defined in Def. 1). It introduces
the following global system parameters:

• N is the size of the PoSp each node must store.

• tping is the time between two pingPeer(id, aux) executions, i.e., it controls how often
each peer is pinged.

• ttimeout is the time pingPeer waits for a response from the peer.

• κ the number of PoSp challenges per pingPeer.

Recall that a node is a tuple (id, aux) by Def. 1. The peer’s identifier is id and aux is some
auxiliary data (e.g., its IP address). In Basic, aux contains a PoSp commitment com with
associated proof πcom and any auxiliary data required by DHT, denoted by auxDHT.

A node joins the network using Basic.join10 (Fig. 1). As part of this, it generates an
identifier id according to DHT and then initializes a PoSp with id as input. It stores the
resulting file file on disk and returns the id and auxiliary data.

Basic.join()→ (id, aux):

01 DHT.join()→ (id, auxDHT)
02 PoSp .Init(id)→ (file, com, πcom)
03 Store file on disk.
04 Return id and aux = {com, πcom} ∪ auxDHT.

Figure 1: Pseudocode of Basic.join.

A node adds another node as a peer using Basic.addPeer (Fig. 2) The function calls
DHT.addPeer after performing two checks. First, it verifies that com is a valid commitment
to a PoSp with input id. Second, it ensures that the peer is storing the PoSp by performing
an initial pingPeer.

10We prefix functions with their protocol to avoid ambiguities, especially between Basic and DHT.
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Basic.addPeer(id, aux):

01 Extract com and πcom from aux.
02 If PoSp .VerifyInit(id, com, πcom)→ false, abort.
03 Await Basic.pingPeer(id, aux)→ b. If b = false, abort.
04 Wait until tping time has passed since the previous ping.
05 DHT.addPeer(id, aux)

Figure 2: Pseudocode of Basic.addPeer.

After having added a peer, Basic.pingPeer (Fig. 3) is run periodically with an interval of
tping time. pingPeer checks that the peer is online, and that it is still storing file associated
with com. To this end, it sends κ uniformly random PoSp challenges chal to the peer and
waits for the peers to answer with proofs. If the peer does not respond within time ttimeout,
it is deemed offline. Else, all proofs πchali are verified.

Basic.pingPeer(id, aux):

01 Extract com from aux.
02 Send κ uniformly random challenges chal1, . . . , chalκ to id.
03 Wait ttimeout time for a response πchal1 , . . . πchalκ :
04 If no response is received, return false.
05 Else, return ∧

i∈[κ] PoSp .Verify(id, com, chali, πchali)

Figure 3: Pseudocode of Basic.pingPeer.

Note that Basic does not influence the choice of identifier. It relies on DHT.Init to
generate id (Fig. 1, Line 1). So bruteforcing a specific identifier is as hard as in DHT. Recall
that picking a specific identifier should be hard, as otherwise, e.g., eclipse attacks could
be possible. The reason is that these attacks require identifiers to be strategically located
in certain parts of the network structure. To this end, attacks often precompute (i.e.,
bruteforce) and store strategically-located identifiers in advance [PMZ22]. In practice, DHT
could, e.g., impose a PoW of reasonable hardness on identifier generation [BM07, JPS+18]
(ideally using a memory-hard function, e.g., Argon2 [BDK16]).

A benefit of Basic is that actually using identifiers is harder for adversaries. While
they may precompute identifiers, whenever they want to use one, they need to initialize
the PoSp first. This might prevent attacks or make them more difficult at least.
Remark. It may be tempting to make PoSp work double-duty and also use it as PoW
scheme in the following way: Compute (y, com, πcom)← PoSp .Init(seed) and define id =
hash(seed, com). One might assume that Init must be computed for every identifier. This
would make bruteforcing identifiers expensive. But this is not the case! The definition of
PoSp (Def. 2) does not rule out the existence of two (or more) commitments com ̸= com′

such that
PoSp .VerifyInit(seed, com, πcom) = true

and
PoSp .VerifyInit(seed, com′, πcom′) = true.
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In fact, in existing constructions it is easy to find many distinct commitments that verify.
Thus, apart from not achieving the intended goal, this modification even allows an attacker
to store one PoSp but act as two (or more) identities (one derived using com, the other
using com′). This would render all guarantees of Basic moot.

4.2 Virtual Nodes
Basic requires that nodes waste a fixed amount of disk space. As a consequence, the
resulting guarantees, informally stated above in Eq. (1), only bound the total number of
Sybils irrespective of the total number of nodes n. Ideally, we want a guarantee of the
form

f/n < α as long as Sadv < c · Shon

where Shon is the space of all honest nodes combined, 0 < α < 1 is a constant, and c is
also a constant that depends on system parameters and α. The following construction,
called Virt, gives such a guarantee in Cor. 1, a consequence of Thm. 2.

The core idea of Virt is to account for the disk space of honest nodes using virtual
nodes [DKK+01].11 One physical node acts as one or more virtual nodes, where each
virtual node runs one Basic instance. Thus, the number of virtual nodes of an honest
node is related to its available disk space.

Since Virt uses Basic as a building block, it inherits its system parameters N , tping,
ttimeout, and κ. In addition, Virt introduces the parameter 0 < δ < 1. It controls the
fraction of disk space used for PoSp. The remaining (1− δ) fraction of the space is used
for the application of which the DHT is a part of (e.g., storing files in IPFS).

Suppose a physical node wants to participate in the DHT having S space. It participates
as ⌈

δ · S
N

⌉
(2)

virtual nodes, each with a distinct identifier. Each of these virtual nodes runs one Basic
protocol instance as described in the previous section § 4.1.

Note that rounding up in Eq. (2) implies that every physical node must have at least
N bits of space. Otherwise, it does not have the resources to run even one Basic instance.
In practice, it should have more space because it also needs to store application data.

5 Theoretical Perspective
Let us analyze the theoretical guarantees of Basic and Virt. Our goal is to bound the
number of Sybils that are part of the DHT (i.e., that are connected to at least one
honest node). To this end, we introduce a system model and specify parameter choices.
Afterward, we combine the theoretical guarantees with existing Sybil-tolerance strategies.

So far, we have introduced a lot of parameters. All of them influence the guarantees,
so we briefly summarize them in Fig. 4. Let us also recall the PoSp notation: εspace,
εtime, and prdet quantify the guarantees of the PoSp. A cheating prover storing at most

11Using virtual nodes (also called virtual servers) in DHTs is not a new idea. Originally, they were
introduced to alleviate load-balancing issue [DKK+01].
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λ Security parameter S
(t)
hon Total honest space at time t

n(t) Number of nodes at time t S
(t)
adv Adversarial space at time t

f (t) Number of Sybil nodes at time t N Prescribed PoSp size
n(t) − f (t) Number of honest nodes at time t δ Fraction of space used by Virt
εspace PoSp space gap tping pingPeer ping interval
εtime PoSp time gap ttimeout pingPeer ping timeout
prdet PoSp detection probability κ # of challenges per ping

Figure 4: Notation summary.

(1− εspace) ·N bits and taking less than (1− εtime) · time(Init)12 time to answer a challenge
will be detected with probability prdet.

5.1 System Model and Parameter Choices
Time is measured in discrete time steps, and messages between nodes are always delivered
with a delay of at most ∆. Nodes do need not know ∆, nor do they need synchronized
clocks. The only assumption we make is that ∆ is not too large, namely that it is upper
bounded by ∆ ≤ ttimeout/2.13

We consider a PPT adversary A that schedules message delivery (while respecting
∆), may attempt to join the DHT with poly(λ) many Sybil nodes that may arbitrarily
deviate from the protocol, and has S

(t)
adv bits of disk space available at time t. We deem

an adversarial node part of the DHT if it is connected to at least one honest node, and
assume that an honest node removes a peer if it fails a ping. The cumulative space of all
honest nodes at time t is denoted by S

(t)
hon.

In terms of parameters, we require ttimeout ≤ tping < (1−εtime)·time(Init).14 Additionally,
we set κ, the number of parallel PoSp challenges per ping, such that Verify detects a cheating
node except with negl(λ) probability. A cheating peer storing at most (1− εspace) ·N bits
evades detection with probability at most (1− prdet)κ. Thus, setting κ = λ/prdet suffices
since (1− prdet)λ/prdet ≤ e−λ is exponentially small in λ.

Let us briefly explain these choices. ttimeout is set such that A cannot solve a PoSp
challenge on-demand. Similarly, the choice of tping ensures that the adversary cannot
use the same space (i.e., (1 − εspace) · N bits) for multiple different Sybil identities by
re-initializing the PoSp between pings of different nodes. Last, the upper bound on
∆ is necessary, otherwise honest nodes could not respond to pings in time: Suppose
∆ > ttimeout/2, then A could delay the PoSp challenge by ∆ and the response by ∆. Since
2∆ > ttimeout, the ping would time out.

12Note that time(Init) in wall-clock time is not known as it depends on the adversary’s hardware. So it
must be estimated, ideally assuming powerful hardware. For example, as we elaborate in § 6, the PoSp
deployed by Filecoin has a latency of ≈ 35 s, even assuming highly-parallel ASICs.

13Plain Kademlia [MM02] also implicitly assumes that message delay is bounded. Indeed, if a peer
does not respond within ttimeout time, it is assumed offline.

14In practice, such frequent pings might not be feasible, primarily due to bandwidth constraints. In
§ 6.2 propose and analyze a different pinging schedule where tping ≫ time(Init) in expectation.
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5.2 Security Analysis
Theorem 1 (Basic). For the system model and parameter choices given in § 5.1, Basic
bounds the number of Sybil nodes at time t > 2tping by

f (t) <
maxi∈[t−2tping,t] S

(i)
adv

(1− εspace) ·N
(3)

except with negl(λ) probability.

Proof. Consider any honest node and any of its Sybil peers at time t. The honest node has
sent the last challenge to id in the time interval [t− tping, t]. Similarly, the second-to-last
challenge to id was issued at the time tc ∈ [t − 2tping, t − tping]. Note that tc is always
defined since Basic. addPeer challenges the peer once before adding it.

Since the peer is still connected at time t, it must have passed all past challenges,
including the one at time tc. There are three reasons why the peer passed the challenge:

1. A dedicated (1− εspace) ·N bits of its space to the PoSp with seed id at some time

ts ∈ [tc, tc + ttimeout]. (4)

2. The commitment com for id is incorrect.

3. The challenge failed to detect the cheating.

Note that Reasons 2 and 3 occur with at most negl(λ) probability by the choice of ttimeout
and κ, and the Soundness of PoSp. Replacing tc in Eq. (4) gives us ts ∈ [t− 2tping, t] since
ttimeout ≤ tping.

Now recall that A has f (t) ∈ poly(λ) Sybil nodes in total, each of which is connected
to an honest node. Thus, all of them must have passed a challenge in time interval
[t− 2tping, t]. By a union bound, the probability that any Sybil passed due to Reasons 2
and 3 is at most negl(λ). Consequently, due to the Nonreusability of PoSp, A must have
dedicated more than (1− εspace) ·N bits to every Sybil node at some point in the interval
[t− 2tping, t]. Since changing the space dedicated to one Sybil to another requires at least
(1− εtime) · time(Init) > tping time, the theorem follows from a pigeonhole argument.

Theorem 2 (Virt). For the system model and parameter choices given in § 5.1, Virt
bounds the fraction of Sybil nodes at time t > 2tping by

f (t)

n(t) <
Sadv

Sadv + (1− εspace) · δ · Shon

except for negl(λ) probability. Here, Sadv = maxi∈[t−2tping,t] S
(i)
adv and Shon = mini∈[t−tping,t] S

(i)
hon.

Proof. Due to Thm. 1, f (t) is upper bounded by Eq. (3). So we only need to lower bound
n(f) to prove the theorem.

Denote the space of a physical, honest node i at time t by S
(t,i)
hon with S

(t)
hon = ∑

i S
(t,i)
hon .

By construction, at every time t, the number of potentially-available honest nodes is lower
bounded by ∑

i

δ · S(i,t)
hon

N

 ≥
∑

i

δ · S(t,i)
hon

N
= δ · S(t)

hon
N

.
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Note that A cannot prevent honest nodes from responding to pings since ∆ < ttimeout/2
by assumption.

We emphasize that the above is not a lower bound on the number of honest nodes at
time t. The reason is that newly-joined nodes are not immediately added as peers, but
only after tping time (Fig. 2, Line 4). Therefore, the actual number of honest nodes at
time t is lower bounded by

n(t) − f (t) ≥ min
i∈[t−tping,t]

δ · S(i)
hon

N
. (5)

Combining Eqs. (3) and (5) and rearranging yields the desired inequality.

Both theorems talk about the maximum/minimum of disk space within a time span of
length at most 2tping. If the disk space is large enough, it is reasonable to assume that
disk space fluctuates at most by a constant within this time span.

Definition 3 (r-Fluctuation of Disk Space). For a constant r ≥ 1, we say the disk space
r-fluctuates if

max
i∈[t−2tping,t]

S
(i)
adv ≤ r · S(t)

adv

and
min

i∈[t−2tping,t]
S

(i)
hon ≥

1
r
· S(t)

hon

for every time t.

We will use this definition to simplify Thm. 2. In addition, recall that we wanted a
statement of the form f (t)/n(t) < α as long as S

(t)
adv < c · S(t)

hon. Rearranging Thm. 2 gives
such guarantees, as the following corollary shows.

Corollary 1 (of Thm. 2). For the system model and parameter choices given in § 5.1
and assuming r-fluctuation of disk space (Def. 3), Virt bounds the fraction of Sybil nodes
at time t > 2tping by

f (t)

n(t) < α

for any constant 0 ≤ α < 1 that satisfies

S
(t)
adv <

α

1− α
· (1− ε) · δ · 1

r2 · S
(t)
hon

except for negl(λ) probability.

5.3 Applications
As surveyed in § 2, prior works describe Sybil-resistance techniques that have provable
guarantees. Generally, these guarantees only hold if the fraction of Sybil nodes f/n < α is
bounded by a constant α. This bound is either simply assumed or justified using a PoW
mechanisms. By Cor. 1, we may use these Sybil-resistance techniques in combination with
Virt instead. We illustrate this by giving two examples of such Sybil-resistance techniques.
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First, consider the construction due to Jaiyeola et al. [JPS+18]. Nodes are assigned
to groups according to their identifier. Each group effectively acts as a single node in a
non-Sybil-resistant DHT protocol, e.g., Chord [SMK+01]. Groups collaboratively decide
on their actions by using a Byzantine agreement protocol. To be secure, every group needs
an honest majority which, amongst other conditions, requires f/n < α for a certain α.

Second, Halo [KT08] is a technique that boosts the success rate of lookup queries.
The idea is to perform lookups along disjoint paths by predicting the location of peers
of the target node. Halo only makes black-box use of the underlying DHT, which is
Chord [SMK+01] (though the techniques should transfer to other DHTs). To theoretically
analyze and simulate Halo, an assumption of the form f/n < α is necessary.

6 Practical Considerations

6.1 Instantiating the Proof of Space
Many PoSp constructions exist [DFKP15, RD16, AAC+17, Fis19, Pie19, Rey23], but only
two are practically efficient enough to run on off-the-shelf hardware. Both follow very
different approaches. Filecoin’s [Pro17] PoSp is based on stacked depth-robust graphs (SDR-
PoSp) [Fis19], while Chia’s [chi] follows a function inversion approach (FI-PoSp) [AAC+17].
For the DHT use-case, SDR-PoSp is better suited for two reasons.

Parallel vs. Sequential Time. An important issue is whether time(Init) measures
sequential or parallel time. Sequential time is the total amount of computation steps
required by a sequential algorithm. This captures the cost of Init, but does not rule out
that parallelism may speed it up. In contrast, parallel time captures an adversary with
unlimited parallelism, so it measures the latency of Init.

The security guarantees of Basic and Virt rely on latency. This rules out FI-PoSp
since inverting a function is parallelizable. In contrast, SDR-PoSp achieves space-hardness
against parallel time adversaries [Fis19]. Thus, SDR-PoSp is suitable for our use-case.

Parameter Guarantees. Irrespective of the above, SDR-PoSp achieves better asymp-
totic parameters and also better practical security. In the best case, the space gap εspace
and time gap εtime should both be small.

Reyzin [Rey23] observes the following: FI-PoSp’s guarantees are not ideal because
its space gap εspace grows as the PoSp size N increases. In contrast, SDR-PoSp fares
better, allowing arbitrary εspace. For the concrete implementation deployed by Filecoin,
εspace = 0.2 and prdet = 0.1. With respect to εtime, there are two analyses giving different
guarantees.

Fisch [Fis19] considers parallel time adversaries and shows that SDR-PoSp allows for
arbitrary εspace at the cost of εtime increasing as εspace decreases. For Filecoin’s concrete
parameters above, this gives εtime < 54/55 ≈ 0.98 leading to (1− εtime) · time(Init) ≈ 35 s
assuming that the adversary has very efficient hardware (i.e., ASICs) [GN]. By only
counting sequential time, Reyzin [Rey23] proves that SDR-PoSp achieves arbitrary εspace
and εtime. This allows for a better time gap; in the case of Filecoin, εtime < 4/5 = 0.8.
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To summarize, SDR-PoSp achieves arbitrary space gap εspace (irrespective of the
analysis) which is better than FI-PoSp. For these, Reyzin’s [Rey23] analysis allows for
a tighter time gap εtime than Fisch’s analysis [Fis19]. Unfortunately, Reyzin’s analysis
only captures the total cost (i.e., sequential time) of Init, but our application cares about
latency (i.e., parallel time).

As a consequence, for Filecoin’s SDR-PoSp we may assume a space gap εspace = 0.2,
detection probability prdet = 0.1, and time gap εtime = 54/55 with (1− εtime) · time(Init) =
35 s. Note that these parameters are pessimistic and also not accurate for adversaries
storing significantly less than (1 − 0.2)N . Asymptotically, if εspace increases, the other
parameters improve (i.e., prdet increases and εtime decreases).

Combining Proofs of Space. Due to hardware constraints, the PoSp size N is limited
in practice. For example, Filecoin’s implementation of SDR-PoSp uses N = 16 or 32 GiB.
This ensures that running Init is possible on off-the-shelf hardware. Consequently, to
achieve larger PoSp sizes, multiple smaller ones need to be combined.

Combining k sub-PoSp of size N results in a larger PoSp of size k · N . Naively,
challenging this PoSp requires k challenges in parallel, one to each sub-PoSp. While this
ensures that the detection probability does not decrease, the bandwidth is increased by a
multiplicative factor of k. To save bandwidth, suppose we challenge the PoSp as follows:
Sample i←$ [k] and then challenge the ith sub-PoSp.

Claim 1. If the sub-PoSp has parameters εspace and prdet, then the combined construction’s
parameters are ε′

space = 2 · εspace and pr′
det = εspace · prdet.

Proof. By an averaging argument [AB09, Lem. A.8], if the adversary stores at most
(1 − ε′

space) · k · N bits of the combined PoSp, at least 0.5 · ε′
space · k sub-PoSp have at

most (1 − 0.5 · ε′
space) · N bits dedicated to them. Setting, ε′

space = 2 · εspace leads to
pr′

det = 0.5 · ε′
space · prdet = εspace · prdet.

We emphasize that neither ε′
space nor pr′

det depend on k. For Filecoin’s (pessimistic)
parameters stated above, ε′

space = 0.4 and pr′
det = 0.02 for a single challenge. As usual, the

detection probability may be boosted by using multiple parallel challenges (again, this is
irrespective of k). For example, for 10 challenges, (1− pr′

det)10 ≈ 0.2.

6.2 Lowering Bandwidth and Optimizing Pings
Bandwidth is a limited resource, and also sensitive to spikes. First, we show how to reduce
bandwidth spikes induced by the PoSp commitments. Second, the parameters assumed in
the theoretical analysis may require impractically large amounts of bandwidth. In short,
this is due to the high ping frequency and overwhelming detection probability per ping.
In the following, we will discuss an alternative approach that allows for infrequent pings
and lower detection probability.

Commitment Bandwidth Spikes. Initially transmitting πcom incurs a large bandwidth
spike when using SDR-PoSp. It achieves an exponentially small soundness error of 2−λ,
but πcom is quite large (for Filecoin, to the order of 290λ). One solution is allowing a
higher soundness error, but that is not ideal. Another is splitting πcom into smaller chunks
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π(1)
com, . . . , π(k)

com and transmitting them chunk-by-chunk over a longer period of time. This
smoothes out bandwidth spikes. SDR-PoSp enjoys the property that each chunk can be
checked individually and reduces the soundness error by a factor 2−λ/k [Rey23]. So the
confidence in com’s correctness increases gradually.

Optimizing pings. For the parameters stated in § 5.1, pings need large amounts of
bandwidth. There are two reason for that.

First, we assume that κ (i.e., the number of parallel PoSp challenges per ping) is
sufficiently large. Recall that we set κ = λ/prdet to ensure an overwhelming detection
probability of 1− e−λ overall. We do this for the sake of the proof because it allows us to
reliably detect (and thus remove) a peer as soon as it starts cheating. In practice, however,
DHTs run for a long amount of time, and also use heuristics to manage peers. For example,
Kademlia [MM02] prefers peers with long uptimes, so peers who fail challenges—even if
only occasionally—will be disconnected. In other words, trust is hard to gain, but easy to
lose. Thus, a lower detection probability should suffice in practice (we will formalize this
momentarily), reducing bandwidth.

Second, we assume frequent pings with a deterministic, sufficiently small interval tping
This ensures that the adversary cannot use the same space for two different identities by
re-initializing it between pings. A more practical (but harder to analyze theoretically)
approach is sampling pinging peers probabilistically. At every point in time, a peer will be
pinged with uniform probability prping. This may be implemented by sampling the time of
the next ping from the geometric distribution parameterized by prping. Intuitively, since
the adversary cannot predict pings, it cannot reliably switch between different identities.
This allows for more infrequent pings, reducing bandwidth.

Theoretical Analysis. The latter two bandwidth improvements (i.e., lowering κ and
pinging probabilistically) require a new theoretical analysis to give bounds on the number
of adversarial nodes in the network. Our analysis splits the time into epochs. Each epoch
lasts T time steps, and epochs start/end at the same time for all honest nodes. As a
consequence, compared to the model we used in § 5.1, we need the additional assumption
that honest nodes have (roughly) synchronized clocks.

When a node learns of a new potential peer, it starts challenging it probabilistically
as described in the previous paragraph. It will only add it as a DHT peer after having
challenged it for an entire epoch at least. If a (potential) peer fails a challenge, it is
removed immediately.

For simplicity, we assume that A’s space Sadv is fixed and large enough to sustain
f = Sadv

(1−εspace)·N Sybil nodes without meaningfully cheating (i.e., as much as the parameters
of the PoSp allow). We now answer the following question: How long should epochs be
(i.e., the value of T ) to ensure that the adversary has at most 2f Sybil nodes?

Theorem 3. Let Sadv be the A’s disk space and define f = Sadv
(1−εspace)·N .

If epochs last T = 6λ
prping·prdet

time, in every epoch, at most 2f Sybil nodes are part of the
DHT except with negl(λ) probability.

In other words, Thm. 3 allows us to reduce prping and prdet at the expense of increasing
T , i.e., making epochs longer. Even if both are constant, T stays linear in the security
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parameter λ. This is an improvement since we previously required an overwhelmingly
large (in λ) detection probability.

Proof of Thm. 3. In every epoch, A starts with at most poly(λ) Sybils, and each Sybil
may be connected to at most poly(λ) honest nodes. Define W as the set of winning Sybils,
i.e., those that are connected to at least one honest node at the end of an epoch (and
thereby will be part of the DHT in the next epoch). To analyze W , we will define two
disjoint sets W1 and W2 such that W ⊆ W1 ∪W2. By bounding the size of both, we will
show that |W | ≤ |W1|+ |W2| = 2f + 0 except with negl(λ) probability. Note that this is
equivalent to the theorem statement.

Define W1 as the set of Sybils to which A dedicated more than (1− εspace) ·N bits for
more than T/2 time steps. By a pigeonhole argument, it follows that

W1 ≤
T · Sadv

T/2 · (1− εspace) ·N
= 2f.

Define W2 ⊆ W \W1, i.e., the set of winning Sybils to which A did not dedicate more
than (1− εspace) ·N bits for more than T/2 time steps. We will show that Pr[W2 = 0] ≥
1− negl(λ). To do so, we introduce two bad events B1, B2, each occurring with negl(λ)
probability, and prove that Pr[W2 = 0] ≤ 1− (Pr[B1] + Pr[B2 ∧ ¬B1]).

• B1 is the bad event that at least one PoSp commitment is not “mostly correct”
(as defined in Def. 2), i.e., at least one Sybil in W2 managed to cheat during its
initialization. By the PoSp’s Soundness of Initialization and a union bound over all
Sybils in W2, Pr[B1] ≤ poly(λ) · negl(λ) which is negligible.

• B2 is the event that the connection of any honest node to any Sybil in W2 is still
active at the end of the epoch. Note that any Sybil in W2 has at most (1− εspace) ·N
for at least T/2 steps, otherwise it would be in W1 instead. For these T/2 time
steps, assuming that the PoSp’s commitment is mostly correct (i.e., B1 did not
occur), the Sybil will fail a PoSp challenge with probability at least prdet by the
PoSp’s Soundness. Since it is connected to at least one honest peer, it will be
pinged/challenged with probability prping at every point in time. Define the event
B′

2 as the event that a specific honest node is still connected to a specific Sybil in
W2. From the above, we deduce that

Pr[B′
2 ∧ ¬B1] ≤ (1− prping · prdet)T/2 ≤ 2−3λ

where the last inequality holds due to T = 6λ
prping·prdet

. Using a union bound over the
at most poly(λ) number of Sybils with at most poly(λ) number of connections each,
we get that

Pr[B2 ∧ ¬B1] ≤ poly(λ) · poly(λ) · Pr[B′
2 ∧ ¬B1] ≤ 2−λ.

Putting the above together, we conclude that

Pr[W2 = 0] ≥ 1− (Pr[B1] + Pr[B2 ∧ ¬B1]) ≥ 1− negl(λ)

which also completes the proof of the theorem.
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6.3 Useful Space
Instead of wasting disk space, our protocol could be adapted to store useful data. Proofs
of catalytic space [Pie19] allow this with two caveats: Accessing this data takes as long as
initializing the PoSp, and efficiently updating the data requires knowledge of it. So this is
only useful to store long-term data, e.g., backups.

Let us remark that Filecoin [Pro17]’s infrastructure is sufficient to implement a protocol
like Virt. This is because the Filecoin network globally tracks how much disk space each
storage node commits to Filecoin. The committed data is not necessarily random, but
may be useful data stored on behalf of a client.

7 Conclusion and Future Work
We have laid the theoretical groundwork for using PoSp as a mechanism to limit Sybils.
Our constructions are simple and come with provable guarantees. Practical deployments
seem feasible; we have given performance recommendations.

Two directions for future work are immediate: First, implementing our constructions
and measuring their performance overheads. Second, simulating attacks against our
constructions to verify their theoretical guarantees.

Other, more far-fetched directions are the following: First, investigating (Sybil-
resistant) DHT constructions that are practical, yet also easy to analyze theoretically.
Second, finding alternatives to virtual nodes since this approach cannot scale arbitrarily
due to, e.g., bandwidth limitations. Other approaches to heterogeneity that are not
using virtual nodes exist (e.g., [BBKK10]). Can they be combined with PoSp to get a
Sybil-resistant DHT?
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A Kademlia
In Kademlia [MM02] identifiers are id ∈ {0, 1}ℓ (e.g., ℓ = 160); the key space is also {0, 1}ℓ.
The distance between two nodes is dist(id1, id2) = id1 ⊕ id2 which is a symmetric metric.

Every node stores its peers in a routing table. It consists of ℓ buckets, each storing up
to k peers to ensure replication (e.g., k = 20). Peers in the ith bucket have a distance of
(2i, 2i+1 − 1) to the node. Buckets covering larger distances are usually full, so an eviction
strategy is necessary, e.g., a least-recently seen one that never evicts online peers [MM02].

lookup(key) returns the k closest nodes to key iteratively. First, a node selects α peers
from its routing table that are closest to key. Then, it asks them for their k peers closest
to key. From these responses, the node again picks the α closest and iterates until it
has found the k closest nodes to key. This requires at most O(log n) time. Note that α
controls the concurrency of lookups (e.g., α = 3).

A new node joins by connecting to an existing node and performing lookup(id) where
id is its desired identifier. This allows it to find its place in the network and other peers.
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